<p>2019å¹´(å¹³æ31å¹´)度ã«å¼ççã§è¡ãããå ¬ç«é«æ ¡å ¥è©¦æ°å¦ã®ç¬¬3åã¨ç¬¬4åã®è§£èª¬ã§ãã<br />
ã¨ãã«å¦æ ¡é¸æåé¡ã®ç¬¬3å第4åã¨åãåé¡ã§ãã<br />
颿°ã¯åº§æ¨ä¸ã®é¢ç©ã¨é¢ç©æ¯ã«é¢ãã座æ¨ã®ä¸è¬çãªæåè¨å®åé¡ã§ã<br />
å¹³é¢å³å½¢ã¯åã¨åå¨è§ã®é¢ä¿ã¨é¢ç©ã®åé¡ã§å¯¾ç§°æ§ãå©ç¨ãã¾ãã<br />
<!--more--><br />
<br />
â»ï¼ä¾é ¼äººã§ããï¼<br />
2019å¹´(å¹³æ31å¹´)度å¼ççå ¬ç«é«æ ¡å ¥è©¦çµããã¾ãããã<br />
åé¨çã®ã¿ãªããããç¶ãããæ¯ãããç²ããã¾ã§ããã</p>
<p>æ©éãåé¨å奿å°ã®ããã¨ãã¦å ¨å½ã§æ´»èºããã¦ãããã®ææåçã«ãå¿ããæç°å çã«ç¡çãè¨ã£ã¦ãé¡ãã2019å¹´(å¹³æ31å¹´)度ã®å¼ççå ¬ç«é«æ ¡å ¥è©¦ã®æ°å¦ã®è§£èª¬ããã¦ããã ãã¾ããã<br />
ä»åã®è§£èª¬ãååï¼2018å¹´ å¹³æ30年度ï¼åæ§ãæ°¸ä¹ ä¿åçã«ãã¦ãè¯ãããã価å¤ãããã¾ããã<br />
ã§ã¯ã第3.4åç®ã®è¶ å¼·åãªè§£èª¬ãã覧ä¸ããã</p>
<p>ã¢ãï¼<br />
æ©ãæ©ãã¨ç¡çãè¨ã£ã¦è§£èª¬ããé¡ããã¦ãããã¨ããããæç°å çã¯ã¡ãã£ã¨ä¸ååã¨æãã¦ããããã§ã追è¨ãã¦ããã®ã§ãããããé¡ããã¾ãã¨ã®ãã¨ã§ãã<br />
ç§ã¨ãã¦ã¯ãããªãã¨ãªãã®ã«ãªãï½ããã¨æãã®ã§ããã»ã»ã»</p>
<p>ãªã®ã§ã追è¨ã楽ãã¿ã«ãã¦ãã¦ãã ããï¼</p>
<p>åé¡ã¯å¼ççã®å ¬å¼ãã¼ã¸ã§ãå ¬éãã¦ããã¦ãã¾ãã</p>
<p>⇒ã<a href="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama.pdf" rel="noopener" target="_blank">2019å¼ççå ¬ç«å ¥è©¦æ°å¦åé¡</a></p>
<h3>第3å颿°åé¡</h3>
<p>ã\(\large{3}\)ã\(\color{red}{\fbox{ã妿 ¡é¸æåé¡ã®3ã}}\)</p>
<p>(1)ã«å ¥ãåã®æ¡ä»¶ã¯ãã¹ã¦ã«éããæ¡ä»¶ã§ãã</p>
<p>ã\(\color{red}{\fbox{ãæ¡ä»¶ã}}\)</p>
<p>ãæ²ç·ã¯\(\displaystyle \,y=\frac{1}{2}x^2\,\)<br />
ãç´ç·ã¯\(\,y=ax+2\,(\,a\,ï¼\,0\,)\,\)<br />
ã交ç¹\(\,\mathrm{A}\,\)ã¯\(\,x\,\)座æ¨ãè² ã\(\,\mathrm{B}\,\)ã¯\(\,x\,\)座æ¨ãæ£<br />
ãç´ç·ã®\(\,y\,\)åçã\(\,\mathrm{C}\,\)<br />
ãç¹\(\,\mathrm{D}\,\)ã®\(\,x\,\)座æ¨ã¯\(\,3\,\)</p>
<p>ããããåãããã¨ãåºãã¦ããã¾ãããã<br />
交ç¹ã¨ç´ç·ã¯ã§ããã ãæ±ãã¦åº§æ¨ä¸ã«ç¤ºãã¦ããã¨è¯ãã§ãã</p>
<p>ã\(\,\mathrm{C}\,\)ã®åº§æ¨ã¯\(\,(\,0\,,\,2\,)\,\)<br />
ã\(\,\mathrm{D}\,\)ã¯\(\,x=3\,\)ã®æ¾ç©ç·ä¸ã®ç¹ãªã®ã§<br />
ã\(\displaystyle \,y=\frac{1}{2}\times (3)^2=\frac{9}{2}\,\)<br />
ãã<br />
ã\(\displaystyle \,\mathrm{D\,\left(\,3\,,\,\frac{9}{2}\,\right)}\,\)<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama033.jpg" alt="" width="291" height="272" class="aligncenter size-full wp-image-13225" /><br />
(1)<br />
\(\,△\mathrm{OCD}\,\)ã®é¢ç©ã§ãã</p>
<p>\(\,3\,\)ç¹\(\,\mathrm{O,C,D}\,\)ã¯åºå®ãããç¹ãªã®ã§åºè¾ºã¨é«ããæ±ºããã°çãã¯ããã«åºã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama035.jpg" alt="" width="273" height="197" class="aligncenter size-full wp-image-13227" /><br />
\(\,\mathrm{OC}\,\)ãåºè¾ºã¨è¦ãã¨\(\,y=ax+2\,\)ã®åç\(\,2\,\)ãåºè¾ºã§ã</p>
<p>é«ãã¯\(\,\mathrm{D}\,\)ã®\(\,x\,\)座æ¨\(\,3\,\)ã¨ãªãã®ã§</p>
<p>ã\(\begin{eqnarray}\displaystyle<br />
\mathrm{△OCD}&#038;=&#038;\frac{1}{2}\times \mathrm{OC}\times \mathrm{DE}\\<br />
&#038;=&#038;\frac{1}{2}\times 2\times 3\\<br />
&#038;=&#038;\underline{ã3ã}<br />
\end{eqnarray}\)</p>
<p>(2)\(\,\mathrm{△ADC=4△CDB}\,\)ã«ãªãã¨ãã®\(\,a\,\)ã®å¤ã§ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama037.jpg" alt="" width="309" height="282" class="aligncenter size-full wp-image-13229" />\(\,a\,\)ã¯ç´ç·ã®å¾ããªã®ã§ã<br />
\(\,a\,\)ãå¤ããã¨\(\,\mathrm{A,B}\,\)ãå¤ããé¢ç©æ¯ãå¤ããã¾ãã</p>
<p>å¤ãããªãã®ã¯\(\,\mathrm{C,D}\,\)ã ãã§ãã</p>
<p>\(\,\mathrm{△ADC=4△CDB}\,\)ã¨ãªãã®ã¯ã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama038.jpg" alt="" width="319" height="223" class="aligncenter size-full wp-image-13230" /><br />
ã\(\,\mathrm{AC=4CB}\,\)<br />
ã¨ãªãã¨ããªã®ã§ã<br />
ãç¹\(\,\mathrm{B}\,\)ã®\(\,x\,\)座æ¨ã\(\,\color{red}{t}\,\)ã¨ããã¨ã<br />
ãç¹\(\,\mathrm{A}\,\)ã®\(\,x\,\)座æ¨ã¯\(\,\color{red}{-4t}\,\)ã¨ãªãã¾ãã<br />
\(\,\mathrm{B}\,\)ã®\(\,x\,\)座æ¨ã¯æ£ãªã®ã§\(\,t\,ï¼\,0\,\)ã§ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama040.jpg" alt="" width="355" height="307" class="aligncenter size-full wp-image-13232" />\(\,\mathrm{A,B}\,\)ã¯æ¾ç©ç·ä¸ã®ç¹ãªã®ã§</p>
<p>ã\(\displaystyle \,\mathrm{B\,\left(\hspace{6pt}t\hspace{6pt},\,\frac{1}{2}t^2\,\right)}\,\)<br />
ã\(\,\mathrm{A\,\left(\,-4t\,,\,8t^2\hspace{4pt}\right)}\,\)</p>
<p>\(\,2\,\)ç¹éã®è·é¢ã§ãè¯ãã®ã§ããã<br />
ãã®ã¨ã\(\,\mathrm{AT:TS=\color{red}{4}:\color{red}{1}}\,\)ã§ãããã®ã§</p>
<p>ã\(\begin{eqnarray}<br />
\mathrm{AT}&#038;=&#038;(8t^2)-(2)\\<br />
&#038;=&#038;8t^2-2<br />
\end{eqnarray}\)</p>
<p>ã\(\begin{eqnarray}\displaystyle<br />
\mathrm{TS}&#038;=&#038;(2)-\left(\frac{1}{2}t^2\right)\\<br />
&#038;=&#038;\frac{4-t^2}{2}<br />
\end{eqnarray}\)<br />
ãã<br />
ã\(\begin{eqnarray}\displaystyle<br />
(8t^2-2):\frac{4-t^2}{2}&#038;=&#038;\color{red}{4}:\color{red}{1}\\<br />
8t^2-2&#038;=&#038;4\times \frac{4-t^2}{2}\\<br />
8t^2-2&#038;=&#038;8-2t^2\\<br />
8t^2+2t^2&#038;=&#038;8+2\\<br />
10t^2&#038;=&#038;10\\<br />
t^2&#038;=&#038;1\\<br />
t&#038;=&#038;\pm 1<br />
\end{eqnarray}\)</p>
<p>ã\(\,tï¼0\,\)ãªã®ã§\(\,t=1\,\)</p>
<p>ãã®ã¨ã\(\displaystyle \,\mathrm{B\,\left(\,1\,,\,\frac{1}{2}\right)}\,\)</p>
<p>ããã\(\,y=ax+2\,\)ãéãã®ã§</p>
<p>ã\(\begin{eqnarray}\displaystyle<br />
\frac{1}{2}&#038;=&#038;a\times (1)+2\\<br />
&#038;=&#038;a+2\\<br />
a+2&#038;=&#038;\frac{1}{2}\\<br />
a&#038;=&#038;\frac{1}{2}-2\\<br />
&#038;=&#038;\underline{ã-\frac{3}{2}ã}<br />
\end{eqnarray}\)</p>
<p>ãã¡ãã\(\,t=1\,\)ã®ã¨ã\(\,\mathrm{A\,(\,-4\,,\,8\,)}\,\)ãä»£å ¥ãã¦ã</p>
<p>ã\(\begin{eqnarray}\displaystyle<br />
8&#038;=&#038;a\times (-4)+2\\<br />
&#038;=&#038;-4a+2\\<br />
4a&#038;=&#038;2-8\\<br />
&#038;=&#038;-6\\<br />
a&#038;=&#038;\frac{-6}{4}\\<br />
&#038;=&#038;\underline{ã-\frac{3}{2}ã}<br />
\end{eqnarray}\)</p>
<p>ã¨åãå¤ãåºã¦ãã¾ãã</p>
<p>ãã®åé¡ã¯ã<br />
ããä¾ãã°\(\,\mathrm{B}\,\)ã®\(\,x\,\)座æ¨ã\(\,x=1\,\)ã ã¨ããã¨é¢ç©æ¯ã¯ï¼ã<br />
ã¨è©¦ããã¨ã«ãã£ã¦çãã¯å¶ç¶ã«ãåºã¦ãã¾ããç¬</p>
<p>åºé¡è ã®æå³ã¯ããã§ã¯ãªãã¨ã¯æãã¾ããã©ã<br />
試é¨ä¸ã«è©¦ãã¦è¦ããã¨ããé«çãã¯ããã¯ï¼ã使ããä½è£ã®ãã人ã»ã©çããè¿ãã£ãåé¡ã§ããã</p>
<h3>第4åå¹³é¢å³å½¢åé¡</h3>
<p>ã\(\,\large{4}\,\)ã\(\color{red}{\fbox{ã妿 ¡é¸æåé¡ã®4ã}}\)</p>
<p>å³å½¢åé¡ã§æ¡ä»¶ãããã¾ãã®ã§æ¸ãåºãã¾ãã</p>
<p>颿°ã¨åãã§(1)ã®åã«ããæ¡ä»¶ã¯ãã¹ã¦ã«ä½¿ããæ¡ä»¶ã§ãã</p>
<p>ã\(\color{red}{\fbox{ãæ¡ä»¶ã}}\)</p>
<p>ã\(\,\mathrm{AB}\,\)ã¯ç´å¾<br />
ã\(\,\mathrm{AM:MP=2:1}\,\)<br />
ã\(\,\mathrm{AB=6}\,\)<br />
ã\(\,\mathrm{∠ABP=60^{\circ}}\,\)<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama041.jpg" alt="" width="340" height="201" class="aligncenter size-full wp-image-13234" />ãããã®æ¡ä»¶ã¯ãã¹ã¦ä½¿ããªãã¨è§£ããªãæ¡ä»¶ã§ãã</p>
<p>åé¡ã«ä¸ããããæ¡ä»¶ã§ä¸è¦ãªãã®ã¯ããã¾ããã</p>
<p>ã\(\,\mathrm{AB}\,\)ã¯ç´å¾<br />
ã\(\,\mathrm{∠ABP=60^{\circ}}\,\)<br />
ããåå¨è§ã\(\,90°\,\)ã«ãªãã®ã§\(\,\mathrm{△ABP}\,\)ã¯ä¸è§å®è¦ã ã¨åããã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama044.jpg" alt="" width="347" height="207" class="aligncenter size-full wp-image-13236" />ä¸è§å®è¦ã®æ¯ãã<br />
ã\(\,\mathrm{PB:AB:AP=1:2:\sqrt{3}}\,\)<br />
ãªã®ã§<br />
ã\(\,\mathrm{AP=\color{blue}{3\sqrt{3}}}\,\)</p>
<!-- WP QUADS Content Ad Plugin v. 2.0.92 -->
<div class="quads-location quads-ad1" id="quads-ad1" style="float:none;margin:0px 0 0px 0;text-align:center;">

</div>

<p>æ¡ä»¶ãã\(\,\mathrm{AM:MP=2:1}\,\)ãªã®ã§<br />
ã<br />
ã\(\begin{eqnarray}\displaystyle<br />
\mathrm{PM}&#038;=&#038;\mathrm{AP}\times \frac{1}{3}\\<br />
&#038;=&#038;3\sqrt{3}\times \frac{1}{3}\\<br />
&#038;=&#038;\underline{ã\sqrt{3}ã}<br />
\end{eqnarray}\)</p>
<p>ãã®\(\,\mathrm{PM=\sqrt{3}}\,\)ã¯(2)ã§ã使ããæ¡ä»¶ã§ãã</p>
<p>åãã£ããã¨ã¯å³ã«æ¸ãè¶³ãã¦ããã¾ãããã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama047.jpg" alt="" width="377" height="225" class="aligncenter size-full wp-image-13237" />\(\,\mathrm{△BPM}\,\)ã¯ç´è§ä¸è§å½¢ã§<br />
ã\(\,\mathrm{PM:BP=\sqrt{3}:3=1:\sqrt{3}}\,\)<br />
ã¨ãªã£ã¦ããã®ã§\(\,\mathrm{△BPM}\,\)ãä¸è§å®è¦ã®1ã¤ã§ãã</p>
<p>ãã®ãã¨ãã</p>
<p>ã\(\,\mathrm{\color{red}{∠MBP=∠MBO=30°}}\,\)</p>
<p>ãè¨ãã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama048.jpg" alt="" width="371" height="226" class="aligncenter size-full wp-image-13238" /><br />
ã\(\,\mathrm{BP:BA=3:6=1:2}\,\)<br />
ã\(\,\mathrm{PM:AM=1:2}\,\)<br />
ãªã®ã§<br />
ã<span class="red b">è§ã®äºçåç·å®ç</span><br />
ãã<br />
ã\(\,\mathrm{\color{red}{∠MBP=∠MBO=30°}}\,\)<br />
ã¯è¨ããã®ã§ããå®çãå¿ãã¦ããå ´åã§ãåºããã¨ãããã¨ã§ç¤ºãã¦ããã¾ããã</p>
<p>ã\(\,\mathrm{△MAB}\,\)ãäºç辺ä¸è§å½¢<br />
ã\(\,\mathrm{△BMP}\,\)ã≡ã\(\,\mathrm{△BMO}\,\)<br />
ã¨ãããã¨ãªã©ããããã¾ãã<br />
æ¬æ¥ã®ä½æ¥ã¨ãã¦ã¯åãããã¨ã¯ãã¹ã¦æ¸ãã¦ããæ¹ãè¯ãã§ãããå¿ è¦ãªããããããªãã®ã§å ã«é²ã¿ã¾ãã</p>
<p>ä½è£ãããå ´åã¯åãããã¨ã¯ãã¹ã¦æ¸ãè¾¼ãã§ããã¨å¾ã®åé¡ã¯çµãã£ã¦ãããã¨ãå¤ãã§ãã<br />
ãã ã試é¨ä¼å ´ã§ã®åé¨çã«ã¯ãã¾ãä½è£ããªãã¨æãããã®ã§ãå ã«é²ãã§åé¡ã«åããã¦æ¡ä»¶ãæ¸ãè¾¼ããã¨ã«ãã¾ãã</p>
<p>(2)<br />
æ¡ä»¶ãå ããã¾ãã</p>
<p>ã\(\,\mathrm{BM}\,\)ã®å»¶é·ã¨\(\,\mathrm{\stackrel{\large{\frown}}{\mbox{AP}} }\,\)ã¨ã®äº¤ç¹ã\(\,\mathrm{Q}\,\)<br />
ã\(\,\mathrm{OP}\,\)ã¨\(\,\mathrm{BQ}\,\)ã¨ã®äº¤ç¹ã\(\,\mathrm{R}\,\)<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama049.jpg" alt="" width="375" height="230" class="aligncenter size-full wp-image-13239" />ã¨ãã¾ãã</p>
<p>â <br />
åé¡ã¯\(\,\mathrm{BQ}\,\)ãæãç®ã¨ãã¦åå\(\,\mathrm{O}\,\)ãæãã¨ã<br />
ç¹\(\,\mathrm{P}\,\)ã¨ç¹\(\,\mathrm{O}\,\)ãéãªããã¨ã説æãããã¨ã§ãã</p>
<p>ã¤ã¾ãã<span class="red b">対称移åãã¦ãã</span>ãã¨ã示ããã¨ã«ãªãã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama050.jpg" alt="" width="369" height="227" class="aligncenter size-full wp-image-13240" /><br />
ã\(\,\mathrm{△BOP}\,\)ã¯æ£ä¸è§å½¢ã§ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama051.jpg" alt="" width="375" height="222" class="aligncenter size-full wp-image-13241" /><br />
ã\(\,\mathrm{∠B}\,\)ã®äºçåç·\(\,\mathrm{BQ}\,\)ã¯åºè¾º\(\,\mathrm{OP}\,\)ãåç´ã«äºçåãã<br />
ã®ã§<br />
ã対称ã®è»¸\(\,\mathrm{BQ}\,\)ã§æãã¨\(\,\mathrm{P}\,\)ã¨\(\,\mathrm{O}\,\)ã¯éãªãã¾ãã</p>
<p>äºç辺ä¸è§å½¢ã®å®çã§ããã<span class="red b">æ£ä¸è§å½¢ãäºç辺ä¸è§å½¢ã®1ã¤</span>ã§ãã</p>
<p>ä»ã«ã\(\,\mathrm{△BOR}\,\)ã≡ã\(\,\mathrm{△BPR}\,\)ããã£ã¦ã対称æ§ããéãªããã¨ã¯è¨ãã¾ãã<br />
ä½ãã©ã使ãããåé¡ã®äºå®ã¯æãç«ã¤ã®ã§èª¬æããã¨è¨ãããæ¹ãé£ããã§ãããç¬</p>
<p>ãã ã<span class="blue b">æãè¿ãã¦éãªã</span>ã¨ãããã¨ã¯ã<br />
ã<span class="red b">\(\,2\,\)ç¹ã対称ï¼ç·å¯¾ç§°ï¼ç§»åããç¹ã©ããã«ãªã£ã¦ãã</span><br />
ãã¨ã示ããã¨ã«ãªãã®ã§ã注æãã¦ããã¾ãããã</p>
<p>â¡<br />
å ¬å¼ã®ä½¿ããªãé¢ç©ãæ±ãã¾ãã</p>
<p>å ¬å¼ã使ããªãé¢ç©ãæ±ããã¨ãã¯ã<br />
ããé¨åãï¼ãé¨åã<br />
ããå ¨ä½ãï¼ãé¨åã<br />
ãè¨ç®ãããã¨ã«ãªãã¾ãã</p>
<p>æ¯ãå©ç¨ããå ´åãããã¾ããããå ¨ä½ãï¼ãé¨åããçç¥ãã¦ããã ãã§ãã</p>
<p><img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama052.jpg" alt="" width="390" height="218" class="aligncenter size-full wp-image-13242" />ããã®é¨åã®é¢ç©ãæ±ãã¾ãã<br />
æå½¢ã®é¸ã³æ¹ã§è¨ç®æ¹æ³ã¯å¤ããã¾ããã©ãããããã¦å¤ãããªãã§ãããã</p>
<p><img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama053.jpg" alt="" width="409" height="219" class="aligncenter size-full wp-image-13243" />ãã®å½±ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama054.jpg" alt="" width="371" height="222" class="aligncenter size-full wp-image-13244" />éãé¨åã®ä¸è§å½¢2ã¤åãå¼ãã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama055.jpg" alt="" width="381" height="228" class="aligncenter size-full wp-image-13245" />å½±ã®æå½¢ã®ä¸å¿è§ã¯\(\,60°\,\)ãªã®ã§ã</p>
<p>ã\(\begin{eqnarray}<br />
ã(æå½¢ã®é¢ç©)&#038;=&#038;\pi\times (3)^2\times \frac{60}{360}\\<br />
&#038;=&#038;\frac{3}{2}\pi<br />
\end{eqnarray}\)<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama058.jpg" alt="" width="415" height="246" class="aligncenter size-full wp-image-13247" />éãå½±ã®2ã¤ã®ä¸è§å½¢ã¯ååãªã®ã§\(\,\mathrm{△OMP}\,\)ã2åãã¾ãã</p>
<p>\(\,\mathrm{△OMP}\,\)ã¯\(\,\mathrm{OM}\,\)ãåºè¾ºãé«ãã\(\,\mathrm{OT}\,\)ã¨ããä¸è§å½¢ãªã®ã§<br />
<img src="https://arakannotie.com/wp-content/uploads/2019/03/2019saitama059.jpg" alt="" width="243" height="264" class="aligncenter size-full wp-image-13250" /><br />
ã\(\begin{eqnarray}\displaystyle<br />
\mathrm{△OMP}&#038;=&#038;\frac{1}{2}\times \sqrt{3}\times \frac{3}{2}\\<br />
&#038;=&#038;\frac{3\sqrt{3}}{4}<br />
\end{eqnarray}\)</p>
<p>ãã£ã¦æ±ããå½±ã®é¨åã®é¢ç©ã¯æå½¢ã®é¢ç©ãã\(\,\mathrm{△OMP}\,\)ã2ã¤åå¼ãã¦ã</p>
<p>ã\(\displaystyle \hspace{10pt}\frac{3}{2}\pi-\frac{3\sqrt{3}}{4}\times 2\\<br />
\displaystyle =\frac{3}{2}\pi-\frac{3\sqrt{3}}{2}\\<br />
\displaystyle =\underline{ã\frac{3\pi-\sqrt{3}}{2}ã}\)</p>
<p>ä»ã«ãè§£æ³ã¯ããããèãããã¾ãã</p>
<p>æ°å¦ã®çãã¯1ã¤ã§ãè§£æ³ã¯1ã¤ã§ã¯ããã¾ããã</p>
<p>ãã ãè©¦é¨æéãèããã¨è¿·ã£ã¦ããããã¯ãªãã®ã§ããç¨åº¦å³ã«æ¸ãè¾¼ã¿ãçµããã°ã<br />
æãã¤ããè§£æ³ã§çªã£èµ°ã£ãæ¹ãã¯ããã§ããã</p>
<p>è¨ç®èªä½ã¯å¤§ãã¦æéãããã¾ããã</p>
<p>以ä¸ã§ãã</p>
<p>⇒ã<a href="https://arakannotie.com/12656.html" rel="noopener" target="_blank">å¼ççå ¬ç«é«æ ¡å ¥è©¦(å¹³æ30年度)ã®æ°å¦éå»åé¡ã®è§£èª¬ã¨å¯¾ç</a></p>
<p>2018年度ã¨åããã¦ä½ã大åããçè§£ãã¦ããã¨è¯ãã§ãã</p>
<p>⇒ã<a href="https://arakannotie.com/13166.html" rel="noopener" target="_blank">2019å¹´(å¹³æ31å¹´)度å¼ççå ¬ç«é«æ ¡å ¥è©¦æ°å¦ã®åé¡ã¨è§£èª¬</a></p>
<p>1ã¯é ç¹ãåå以ä¸ããå°åéåã§ãã<br />
妿 ¡é¸æåé¡ã¨éè¤ããåé¡ãããã®ã§ããã£ã¨è¡ããã®ã°ããã§ã¯ãªãã§ããã</p>
<p>⇒ã<a href="https://arakannotie.com/13197.html" rel="noopener" target="_blank">2019å¹´(å¹³æ31å¹´)度å¼ççå ¬ç«é«æ ¡å ¥è©¦æ°å¦ç¬¬2åã®è§£èª¬</a></p>
<p>2ãå°åé¡éåã§ããä½å³ã¯è¦æ £ããªãè§åº¦ã ã£ãããããã¾ããã</p>
<p>⇒ã<a href="https://fromhimuka.com/math/1508.html" rel="noopener" target="_blank">2019å¼ççå ¬ç«å ¥è©¦å¦æ ¡é¸æåé¡ã®è§£èª¬</a></p>
<p>妿 ¡é¸æåé¡ã®è§£èª¬ãã¼ã¸ã§ãã
<!-- WP QUADS Content Ad Plugin v. 2.0.92 -->
<div class="quads-location quads-ad2" id="quads-ad2" style="float:none;margin:0px 0 0px 0;text-align:center;">

</div>