<p>å¼ççç«é«æ ¡å ¥è©¦2018å¹´ã®æ°å¦ã®éå»å解説ã§ãã<br />
第4å颿°ã®è§£èª¬ã§ããããã®åé¡ããã颿°å ¨ä½ã§ã®ã³ããã¤ãããã¨ãã§ãã¾ãã<br />
颿°ãè¦æã«ãã¦ãã人ã¯ä½ãééãã¦ããã®ã§ããããã<br />
ä½ãè¶³ãã¦ããªãã®ã§ããããã<br />
é«å¾ç¹ãåã人ã¨ã®éãã¯ã¡ãã£ã¨ãããã¤ã³ãã ãã§ããã<br />
<!--more--><br />
</p>
<p>â»ï¼ä¾é ¼äººã§ããï¼<br />
第4å¼¾ãå¾ ãããã¾ããã<br />
å¼ççå ¬ç«é«æ ¡å ¥è©¦2018å¹´ æ°å¦ã®éå»åé¡4åç®ã®ãªãªã¸ãã«è§£èª¬ã¨å¯¾çã§ãã</p>
<p>ãã®è§£èª¬ã§ã³ããã¤ããã§ä»ã¾ã§ã®è¦ææèãéå»ã®ãã®ã«ãã¾ãããï¼</p>
<p>ã§ã¯ãä»åã§æ°å¦ã®éå»åæå¾ã¨ãªãè¶ å¼·åãªè§£èª¬ã¨å¯¾çãã覧ä¸ããã</p>
<p>åé¡ã¯å¼ççç«ç·åæè²ã»ã³ã¿ã¼ã«ãããã¾ãã</p>
<p>⇒ã<a href="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama.pdf" rel="noopener" target="_blank">2018å¼ççç«é«ç妿 ¡å ¥è©¦åé¡</a></p>
<h3>颿°ã¯ãã£ã4ã¤ãããªã</h3>
<p>髿 ¡åé¨ã®æ°å¦ã®ä¸ã§é¢æ°ã¨å¼ã°ãããã®ã¯ãã£ã4ã¤ããããã¾ããã</p>
<p>ãæ¯ä¾ã\(y=ax\)<br />
ã忝ä¾ã\(\displaystyle y=\frac{a}{x}\)<br />
ãï¼æ¬¡é¢æ°ã\(y=ax+b\)<br />
ãï¼æ¬¡é¢æ°ã\(y=ax^2\)</p>
<p>ãã®ï¼ã¤ããããã¾ããã<br />
ããããæ¯ä¾ã¯ï¼æ¬¡é¢æ°ã®ï¼ã¤ã ããï¼æ¬¡é¢æ°ã¯åç¹ãéãå ´åããããã¾ããã</p>
<p>è¦ãã¦ãããªãã¨ãããªããã¨ãããã¾ããã©ã<br />
æä½éã®ãã¨ãè¦ããã°ãããããã¨ã¯ããã¾ãããã</p>
<p>å¹³åç¹ä»¥ä¸ã¨ããã°è¯ããªãé¢ç©ããããã§ããå¿ç¨åé¡ã¯æ¨ã¦ã¦ãè¯ãã§ããã©ã<br />
åºæ¬åé¡ã ãã§ãç¹æ°åã£ã¦ããã¾ãããã</p>
<h4>第4åã颿°ã¨é¢ç©</h4>
<p>颿°ã®åé¡ã§ããã(1)ã¯å°åé¡éåã§ãåºãããªåºæ¬åé¡ã§ãã<br />
(2)ããªãã ãåé¡ãããããããã«è¦ãã¾ããæ®éã«çãã ãã§ã¯ãªãã¦ããã©ããã£ã¦æ±ãããæ¸ãã¦ä¸ããããã¨ããã®ãå ãã£ãã ãã§ãã<br />
(3)ã¯ã¡ãã£ã¨èãæ¹ãå¤ããã°ç°¡åã«çããåºãã®ã§ãããéä¸ã§ãããã¨ãå¤ãã®ã§å¾åãã§ããã¾ãã¾ããã</p>
<div class="su-note" style="border-color:#d8dce3;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f2f6fd;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
å³ã®å³1ã«ããã¦ï¼æ²ç·â ã¯é¢æ°ã\(\displaystyle y=\frac{1}{2}x^2\)<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama412-e1538978638217.jpg" alt="" width="300" height="220" class="alignright size-full wp-image-12632" /><br />
ã®ã°ã©ãã§ï¼æ²ç·â¡ã¯é¢æ° \(\displaystyle y=ax^2\,(a>\frac{1}{2})\)<br />
ã®ã°ã©ãã§ããæ²ç·â ä¸ã« \(x\) 座æ¨ãï¼2ï¼3<br />
ã§ãã2ç¹Aï¼Bãã¨ãï¼ãã®2ç¹ãéãç´ç· \(\ell\)<br />
ãã²ãã¾ããç´ç· \(\ell\) ã¨æ²ç·â¡ã¨ã®äº¤ç¹ã®ãã¡<br />
\(x\) 座æ¨ãè² ã§ããç¹ãCï¼æ£ã§ããç¹ãDã¨ãï¼<br />
ç´ç· \(\ell\) 㨠\(y\) 軸ã¨ã®äº¤ç¹ãEã¨ãã¾ãã<br />
ãAC:CEï¼1ï¼3 ã®ã¨ãï¼æ¬¡ã®ååã«çããªããã<br />
</div></div>
<p>åé¡ã«å ¥ãåã«ããããã¨ã¯è¦ãããæ¸ãåºãã¦ãã°ã©ãã«æ¸ãè¾¼ãã§ããã¾ãããã<br />
æç« ã§æ¸ãããæ¡ä»¶ã¯ã°ã©ãã«æ¸ãè¾¼ãã¨10åä½ãããããããªãã¾ãã<br />
ãã®åé¡ã¯æ¡ä»¶ãå¤ãã¦ãã¡ããã¡ããã¾ãã®ã§ãå¥ç´ã«å¤§ããã°ã©ããæ¸ãã¦åº§æ¨ãæ¸ãè¾¼ãã¨è¦ããããªãã¾ãã<br />
(3)ã¯ã¡ãã£ã¨å¤§ããã®ã°ã©ããåé¡ã«ä¸ãã¦ããã¦ãã¾ãããæ å ±æ´çããã£ããããªãã¨é¢æ°ã¯é£ããæãã¾ãã</p>
<p>ã\(\mathrm{A}\) ã® \(x\) 座æ¨ã¯ \(ï¼2\)ã<br />
â ã®ã\(\displaystyle y=\frac{1}{2}x^2\)ãä¸ã®ç¹ãªã®ã§ã<br />
\(x=-2\) ãä»£å ¥ã㦠\(\displaystyle y=\frac{1}{2}(-2)^2\,=\,2\)</p>
<p>ã\(\mathrm{A}(\,-2\,,\,2\,)\)</p>
<p>ãB ã® \(x\) 座æ¨ã¯ \(3\)<br />
â ã®ã\(\displaystyle y=\frac{1}{2}x^2\)ä¸ã®ç¹ãªã®ã§ã<br />
\(x=3\) ãä»£å ¥ã㦠\(\displaystyle y=\frac{1}{2}(3)^2=\frac{9}{2}\)</p>
<p>ã\(\displaystyle \mathrm{B}\left(\,3\,,\,\frac{9}{2}\,\right)\)</p>
<p>\(\ell\)ãã¯ãã®2ç¹ãéãã®ã§ããã«æ±ã¾ãã¾ããã(1)ã§åé¡ã«ãªã£ã¦ããã®ã§å¾ã§ããã¾ãã</p>
<p>ããããã¨ã¯ç¹ \(\mathrm{E}\) 㯠\(\ell\) ã®åçã§ãããã¨ã¨ã</p>
<p>ã\(\mathrm{AC}:\mathrm{CE}=1:3\)</p>
<p>ããã(2)ã§ä½¿ããã¨ã«ãªã£ã¦ããã®ã§ãå¾ã§ä½¿ãã¾ããæ¸ãåºãã¦ããã¾ãããã</p>
<h3>ç´ç·ã¯2ç¹ãããã°æ±ãããã¨ãã§ãã</h3>
<div class="su-note" style="border-color:#d8dce3;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f2f6fd;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(1)ç´ç· \(\ell\) ã®å¼ãæ±ããªããã<br />
</div></div>
<p>ç´ç·ã1æ¬¡é¢æ°ã¨ã¯éãã¾ããã<br />
ã\(x=1\)ããã\(y=2\)ãã¨ãã£ãå®ç´ç·ã¨å¼ã°ãããã®ãç´ç·ãªã®ã§ã<br />
ãç´ç·ï¼1æ¬¡é¢æ°ãã¨ã¯ãªãã¾ãããããã®å ´åã¯1æ¬¡é¢æ°ã§ãã</p>
<p>1æ¬¡é¢æ°ã¯ã\(y=ax+b\)ãã¨ãªãã¾ãã<br />
ã\(a\)ãã¯å¾ãã\(b\)ãã¯åçï¼\(y\)åçï¼<br />
ã§ãã</p>
<p>1æ¬¡é¢æ°ã®æ±ãæ¹ã¯ãã»ã¨ãã©ã®å ´åã<br />
ã\(\color{black}{\fbox{é£ç«æ¹ç¨å¼ãè§£ãã}}\)<br />
ã\(\color{red}{\fbox{å¾ããå ã«æ±ãã¦ãå¾ã§åçãæ±ããã}}\)<br />
ã®äºéãããã¾ãããæç¶å¾ããå ã«æ±ããæ¹æ³ããããããã¾ãã</p>
<p>ãªããã¨ããã¨ã<span class="red b">颿°ã®ã¡ãã£ã¨ããå¿ç¨åé¡ã§ã¯1æ¬¡é¢æ°ãããã¤ãæ±ãã</span>ãã¨ã«ãªãã¾ããã<br />
é£ç«æ¹ç¨å¼ãè§£ããã使ãéãå¤ãããã§ãã</p>
<p>ã§ã¯ç´ç·ã\(\ell\)ããæ±ãã¾ãããã</p>
<p>ã\(\displaystyle \mathrm{A}(\,-2\,,\,2\,)\hspace{8pt}\mathrm{B}\left(\,3\,,\,\frac{9}{2}\right)\)</p>
<p>ã\(\displaystyle \color{red}{å¾ã=\frac{ \hspace{6pt}y\,ã®å¢å\hspace{10pt} \,}{ \hspace{6pt}x\,ã®å¢å\hspace{10pt}}}\)</p>
<p>ãªã®ã§ããããã®å¢åãåºãã¾ããã座æ¨ã2ã¤ç¸¦ã«ä¸¦ã¹ã¦åãæ¹åã«ã²ãã°åºã¾ãã</p>
<p>ã\((\hspace{10pt}\color{red}{-2}\hspace{10pt},\hspace{10pt}\color{red}{2}\hspace{10pt})\)<br />
ã\(\displaystyle \left(\hspace{12pt}\,\color{blue}{3}\hspace{10pt},\hspace{8pt}\color{blue}{\frac{9}{2}}\hspace{10pt}\right)\)</p>
<p>ãã®ã¨ãã®æ³¨æç¹ã¯ã²ãæ¹åãå¤ããªããã¨ã§ãã<br />
\(x\) ã®å¢åã§ä¸ã®åº§æ¨ããä¸ã®åº§æ¨ãã²ãããã\(y\) ã®å¢åãä¸ããä¸ãã²ãã¾ãã</p>
<p>ãããééããã¨ç¬¦å·ãéã«ãªãã¾ãã</p>
<p>ã<span class="red b">ä¸ããä¸ãã²ãã¨æ±ºãã¦</span>ããã°è¯ãã ãã§ãã</p>
<p>\(\color{magenta}{xãã®å¢å}\)ã¯<br />
ã\(\color{blue}{3}ï¼(\color{red}{-2})=3+2=5\)</p>
<p>\(\color{magenta}{yãã®å¢å}\)ã¯<br />
ã\(\displaystyle \color{blue}{\frac{9}{2}}-\color{red}{2}=\frac{5}{2}\)</p>
<p>ãã£ã¦å¾ãã¯<br />
ã\(\displaystyle \frac{\frac{5}{2}}{5}=\frac{5}{2}\times \frac{1}{5}=\frac{1}{2}\)</p>
<p>ãã®ã¨ãæ±ãã1æ¬¡é¢æ°ï¼ç´ç·ï¼ã¯<br />
ã\(\displaystyle y=\frac{1}{2}x+b\)<br />
ã¨ããã¾ãã<br />
ãã®ç´ç·ã¯ç¹ A , B ãéãã®ã§ã©ã¡ãããä»£å ¥ããã° \(b\) ãæ±ºã¾ãã¾ãã</p>
<p>ã\(\mathrm{A}(\,-2\,,\,2\,)\)ããä»£å ¥ãã¾ãããã</p>
<p>ã\(\displaystyle (2)=\frac{1}{2}\times (-2)+b\\ \\<br />
2=-1+b\\ \\<br />
3=b\)</p>
<p>ãããæ±ããç´ç· \(\ell\) ã¯</p>
<p>ã\(\displaystyle \underline{y=\frac{1}{2}x+3}\)</p>
<p>ãã¡ããç¹Bãä»£å ¥ãã¦ãåãå¼ãåºã¦ãã¾ãã</p>
<p>é£ç«æ¹ç¨å¼ãå©ç¨ããå ´åã<br />
ãæ±ããç´ç·ãã\(y=ax+b\) ãã¨ããã¦ã<br />
ã\(\displaystyle \mathrm{A}(\,-2\,,\,2\,)\hspace{8pt}\mathrm{B}\left(\,3\,,\,\frac{9}{2}\right)\)<br />
ãä»£å ¥ãã¾ãã</p>
<p>ã\( \begin{cases}<br />
\hspace{7pt} 2=-2a+b\\ \\<br />
\hspace{7pt} \displaystyle \frac{9}{2}=3a+b<br />
\end{cases}\)</p>
<p>é£ç«æ¹ç¨å¼ã®å¦çã®åºæ¬ã¯ä¸æåæ¶å»ã§ãã</p>
<p>ä¸ã®æ¹ç¨å¼ã2åãã¦ã<br />
ã\(9=6a+2bã・・・â \)<br />
ä¸ã®æ¹ç¨å¼ã2åãã¦<br />
ã\(4=-4a+2bã・・・â¡\)<br />
â -â¡ãã \(b\) ãæ¶å»ãã¦<br />
ã\(5=10a\)ãããã\(\displaystyle a=\frac{1}{2}\)<br />
ãããâ ãâ¡ããã®åã®ã©ããã«ä»£å ¥ãã¦ã\(b\) ãæ±ãã¾ãã<br />
â¡ã«ä»£å ¥ãã¦ã¿ã¾ããããï¼ã©ãã§ãåãã§ããï¼<br />
ã\(\displaystyle 4=-4\times \left(\frac{1}{2}\right)+2b\\ \\<br />
4=-2+2b\\ \\<br />
6=2b\\ \\<br />
3=b\)</p>
<p>ãã£ã¦æ±ããç´ç· \(\ell\) ã¯<br />
ã\(\displaystyle \underline{y=\frac{1}{2}x+3}\)<br />
ã¨åããã®ãåºã¦ãã¾ãã</p>
<p>åæ°ãæ··ãã£ã¦ããã®ã§è¨ç®ãããããããã«è¦ãã¾ãããã»ã¨ãã©ã®å ´åã¯å¾ãããæ±ããæ¹ãæ¥½ã§ãããããã§ããã®ç¨åº¦ã®è¨ç®ã¯æ¥½ãªæ¹ã§ãã</p>
<h4>æ¯ä¾å®æ°ã®æ±ºå®æ¹æ³</h4>
<div class="su-note" style="border-color:#d8dce3;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f2f6fd;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(2)ã\(a\) ã®å¤ãï¼éä¸ã®èª¬æãæ¸ãã¦æ±ããªããããã®éï¼è§£çç¨ç´ã®å³ãç¨ãã¦èª¬æãã¦ãè¯ããã®ã¨ãã¾ãã<br />
</div></div>
<p>è§£çç¨ç´ã®å³ã¯æåã«åé¡ã«ã¤ãã¦ããå³ã®ãã¨ã§ãã<br />
è§£çç¨ç´ã«ãæ¸ãã¦ããã¦ããã¨ãããåé¨çã®æéãçãã¦ããã¦ãããã®ããã親åãªåé¡ã§ãã</p>
<p>ãéä¸ã®èª¬æãæ¸ãã¦ãã¯çããåºãã¨ãã®èããé åºã§æ¸ãã°è¯ãã®ã§ãã</p>
<p>ãããã \(a\) ã¨ã¯ä½ãï¼<br />
â¡ \(y=ax^2\) ã®æ¯ä¾å®æ°ã®ãã¨ã§ãã</p>
<p>ã ããâ¡ä¸ã®1ç¹ãè¦ã¤ããã°è¯ãã ãã§ãã<br />
æ¡ä»¶ã¯ãã\(\mathrm{AC}:\mathrm{CE}=1:3\)ãããããã¾ããã</p>
<p>ç´ç·ãå¾ããæã£ã¦ãã¦ãããã«ããããããã¾ãããã<br />
ã\(\mathrm{A,C,E}\)ã® \(x\) 座æ¨ã®å·®ï¼ééï¼ã 1ï¼3 ã«ãªãã¾ãã</p>
<p>ã\(\mathrm{A}\) ã® \(x\) 座æ¨ã¯\(-2\)ï¼\(\mathrm{E}\) ã® \(x\) 座æ¨ã¯ \(0\)<br />
ãªã®ã§ããã®å·®ã\(2\)ãã4çåããã°ãããããããªãã¾ãã<br />
ã\(\mathrm{A}\) 㨠\(\mathrm{E}\) ã®ä¸ç¹ã® \(x\) 座æ¨ã¯ \(-1\)<br />
ããã«ãã®ååå·¦ã«å¯ãã¨ç¹ \(\mathrm{C}\) ã® \(x\) 座æ¨ãªã®ã§,<br />
ã\(\mathrm{C}\) ã® \(x\) 座æ¨ã¯ã\(\displaystyle -\frac{3}{2}\)<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama413.jpg" alt="" width="515" height="358" class="aligncenter size-full wp-image-12634" /></p>
<p>ãã® \(\mathrm{C}\) 㯠\(\ell\) ä¸ã®ç¹ãªã®ã§ \(y\) 座æ¨ããããã¾ãã<br />
ã \(\ellã:ã\displaystyle y=\frac{1}{2}x+3\)</p>
<p>ã« \(\displaystyle x=-\frac{3}{2}\)ããä»£å ¥ãã¦<br />
ã\(\begin{eqnarray}<br />
\displaystyle y&#038;=&#038;\frac{1}{2}\times \left(-\frac{3}{2}\right)+3\\<br />
\displaystyle &#038;=&#038;-\frac{3}{4}+3\\<br />
\displaystyle &#038;=&#038;\frac{-3+12}{4}\\<br />
\displaystyle &#038;=&#038;\frac{9}{4}<br />
\end{eqnarray}\)</p>
<p>ãã£ã¦ç¹\(\mathrm{C}\)ã®åº§æ¨ã¯<br />
ã\(\displaystyle \mathrm{C}\left(\,-\frac{3}{2}\,,\,\frac{9}{4}\,\right)\) ã</p>
<p>ãã®ç¹\(\mathrm{C}\)ã¯â¡ãéã£ã¦ãã¾ãã<br />
â¡ \(y=ax^2\) ã¯1ç¹ããã°æ¯ä¾å®æ°ã決ã¾ãã®ã§ç¹\(\mathrm{C}\)ãä»£å ¥ããã¨<br />
ã\(\begin{eqnarray}<br />
\displaystyle \frac{9}{4}&#038;=&#038;a\left(-\frac{3}{2}\right)^2\\<br />
\displaystyle \frac{9}{4}&#038;=&#038;\frac{9}{4}a\\<br />
1&#038;=&#038;a<br />
\end{eqnarray}\)</p>
<p>ã∴ã\(\underline{a=1}\)</p>
<h3>颿°ã®æ»ç¥æ³</h3>
<p>颿°ã§é£ããæããã®ã¯ã<span class="red b">éä¸ãæãã¦ãã</span>ããã§ãã<br />
(1)ãè¦ã¦ãããããã«äº¤ç¹ããããã°ç´ç·ãæ±ã¾ãã¾ãã<br />
(2)ãè¦ã¦ãããããã«ç¹ãä¸ãããã¦ããã°æ¯ä¾å®æ°ã¯ç°¡åã«æ±ã¾ãã¾ãã</p>
<p>ã¤ã¾ãã<br />
ã\(\color{blue}{\fbox{交ç¹ããã¹ã¦ãããã°ãã¹ã¦ã®ç´ç·ãæ²ç·}}\)<br />
ã\(\color{magenta}{\fbox{ç´ç·ã颿°ããããã°äº¤ç¹ããã¹ã¦}}\)<br />
æ±ã¾ãã¾ãã</p>
<p>ããããèªå°ã«ã¯ãã¹ã¦ã¯å ¥ã£ã¦ãã¾ããã<br />
ãã®æãã¦ããé¨åãèªåã§ããããããªãããããã§ã»ã¨ãã©ã決ã¾ãã¾ãã</p>
<p>ä¸ã«ã¯åº§æ¨ãæåè¨å®ããå¿ç¨åé¡ãããã¾ãããæºç¹ãçããªãäººã¯æ¨ã¦ã¦è¯ãã§ããç¬</p>
<p>ãã ãè©¦é¨æéã¯éããã¦ãã¾ãã<br />
ä¸å¦çã®å ´åãããã颿°ã«ã©ãã ãæéãæ¸ãããã¯å¤§ããªå·®ã¨ãªãã¾ãã</p>
<div class="su-note" style="border-color:#d8dce3;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f2f6fd;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(3)ãå³ã®å³2ã®ããã«ï¼ç´ç·OCï¼OD ãã²ãï¼<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama421.jpg" alt="" width="330" height="254" class="alignright size-full wp-image-12637" /></p>
<p>æ²ç·â ã¨ã®äº¤ç¹ãF,G ã¨ãã¾ããåè§å½¢CDGF<br />
ã®é¢ç©ãæ±ããªããã<br />
ããã ãã座æ¨è»¸ã®åä½ã®é·ãã 1 cm ã¨ãã¾ãã<br />
</div></div>
<p>å®éã«ã®è©¦é¨åé¡ã«ããã°ã©ãã¯ãã£ã¨å¤§ããã®ã§è©¦é¨ã§ä½¿ãã¾ãã<br />
ããã§èªåã§æ¸ãè¾¼ããã¨ããããã¨ãã人ã¯ãæ£ç¢ºã§ç¡ãã¦ãè¯ãã®ã§å¤§ããã®ã°ã©ããæ¸ãã¦èãã¦ã¿ã¦ä¸ããã</p>
<p>èãããã¨ããã¾ããªãã¨ãããã¨ããããã¾ãã</p>
<p>(1)(2)ã¨ç¶ãã¦(3)ãããå ´åã(1)(2)ã§åºã¦ããçãã¯ä½¿ããã¨ãã»ã¨ãã©ã§ããã<br />
ä»ã¾ã§èªå°ããããã¨ãç¡è¦ããªãã§ä¸ãããã</p>
<p>ããã£ã¦ãããã¨ãæ¸ãåºãã¦ããã¾ãããã</p>
<p><span class="red b">ã\(\ellãï¼ã\displaystyle y=\frac{1}{2}x+3\)<br />
ã\(\mathrm{A}\,(-2\,,\,2\,)\)ã\(\displaystyle \mathrm{B}\,\left(3\,,\,\frac{9}{2}\,\right)\)<br />
ã\(\displaystyle \mathrm{C}\,\left(-\frac{3}{2}\,,\,\frac{9}{4}\,\right)\)ã\(\mathrm{D}\,(2\,,\,4\,)\)</span></p>
<p>ããããã§ãã</p>
<p>ã<span class="black b">ç´ç· OC ã®å»¶é·ã¨æ²ç·â ã¨ã®äº¤ç¹ã F</span><br />
ã<span class="black b">ç´ç· OD ã®å»¶é·ã¨æ²ç·â ã¨ã®äº¤ç¹ã G</span></p>
<!-- WP QUADS Content Ad Plugin v. 2.0.92 -->
<div class="quads-location quads-ad1" id="quads-ad1" style="float:none;margin:0px 0 0px 0;text-align:center;">

</div>

<p>FãG ã®åº§æ¨ãåºãã¦ããããã®ã§ç´ç· OCãOD ãæ±ãã¾ãã</p>
<p>ãããã¯åç¹ãéãã®ã§æ¯ä¾ã ããã\(y=ax\)ãã®å½¢ã§ãã</p>
<p>ç´ç· OC ã¯ã\(\displaystyle \mathrm{C}\,\left(-\frac{3}{2}\,,\,\frac{9}{4}\,\right)\)ããéãã®ã§ã<br />
ã\(\displaystyle \frac{9}{4}=a\times \left(-\frac{3}{2}\right)\)<br />
ãããã<br />
ã\(\displaystyle a=-\frac{9}{4}\times \frac{2}{3}=-\frac{3}{2}\)</p>
<p>ãã£ã¦<span class="red b">ç´ç· OC ã¯ã \(\displaystyle y=-\frac{3}{2}x\)</span></p>
<p>åç¹ãéãæ¯ä¾ã ããåçã¯æåããèããªãã¦è¯ãã§ããã</p>
<p>åãããã«ç´ç·ODã®å¼ãåºãã¾ãã</p>
<p>å¥ã«æã ãããã£ã¦ããã®ã§ã¯ããã¾ãããå¿ è¦ã ãããã£ã¦ããã®ã§ãã</p>
<p>ç´ç· OD ã¯ã\(\mathrm{D}\,(2\,,\,4\,)\)ããéãåç¹ãéãç´ç·ï¼\(y=ax\)ï¼ãªã®ã§ã<br />
ã\(4=a\times 2\)ãããã\(a=2\)</p>
<p>ãã£ã¦<span class="red b">ç´ç· OD ã¯ã\(y=2x\)</span></p>
<p>ãã¦ãç¹FãG ã®åº§æ¨ãåºãã¾ãããã<br />
é¢ç©ãæ±ããã®ã§ãã¹ã¦ã®ç¹ã®åº§æ¨ã¯åºããªãã¦ã¯ãªãã¾ããã</p>
<p>ãã®æ®µéã®èªå°ãé£ãã§ããã®ã§ãã<br />
æå°æªããã¦ããã®ã§ã¯ãªããããã§å·®ãã¤ãããã«ãã¦ããã®ã§ãã<br />
ããã«ããããã¹ã¦ãå°åã«ãã¦ãããçéãç«ã¦ãã¨ããé¨åã試é¨ã§ãã¾ããã</p>
<p>ç¹Fã¯ãâ ã¨ç´ç· OC ã¨ã®äº¤ç¹ã§ãã</p>
<p>交ç¹ã¨ããã°é£ç«ãã¯å¸¸èã§ãããã</p>
<p>ã\( \begin{cases}<br />
\hspace{7pt}\displaystyle y=\frac{1}{2}x^2\\<br />
\hspace{7pt}\displaystyle y=-\frac{3}{2}x<br />
\end{cases}\)</p>
<p>ãã<br />
ã\(\begin{eqnarray}<br />
\displaystyle \frac{1}{2}x^2&#038;=&#038;-\frac{3}{2}x\\<br />
x^2&#038;=&#038;-3x\\<br />
x^2+3x&#038;=&#038;0\\<br />
x(x+3)&#038;=&#038;0\\<br />
x&#038;=&#038;0,-3<br />
\end{eqnarray}\)</p>
<p>\(x=0\)ãã¯åç¹ã®ãã¨ãªã®ã§<span class="red b">äº¤ç¹ F ã® \(x\) 座æ¨ã¯ \(-3\)</span></p>
<p>ç´ç·OCã\(\displaystyle y=-\frac{3}{2}x\) ã« \(x=-3\) ãä»£å ¥ããã¨ã<br />
ã\(\displaystyle y=-\frac{3}{2}\times (-3)=\frac{9}{2}\)</p>
<p>ãã£ã¦ã<span class="red b">\(\displaystyle \mathrm{F}\,\left(\,-3\,,\,\frac{9}{2}\right)\)</span></p>
<p>åãããã«ç¹ F ã¯ãâ ã¨ç´ç· OC ã¨ã®äº¤ç¹ã§ãã</p>
<p>ã\( \begin{cases}<br />
\hspace{7pt}\displaystyle y=\frac{1}{2}x^2\\<br />
\hspace{7pt} y=2x<br />
\end{cases}\)</p>
<p>ãã<br />
ã\(\begin{eqnarray}<br />
\displaystyle \frac{1}{2}x^2&#038;=&#038;2x\\<br />
x^2&#038;=&#038;4x\\<br />
x^2-4x&#038;=&#038;0\\<br />
x(x-4)&#038;=&#038;0\\<br />
x&#038;=&#038;0,4<br />
\end{eqnarray}\)</p>
<p>\(x=0\)ãã¯åç¹ã®ãã¨ãªã®ã§<span class="red b">äº¤ç¹ G ã® \(x\) 座æ¨ã¯ \(4\)</span></p>
<p>\(y\) 座æ¨ã¯ \(y=2x\) ã«ã\(x=4\)ããä»£å ¥ãã¦<br />
ã\(y=2\times (4)=8\)</p>
<p>ãã£ã¦ã<span class="red b">\(\mathrm{G}\,(\,4\,,\,8)\)</span></p>
<p>ããã¾ã§ãã°ã©ãã«æ¸ãè¾¼ãã§ã¿ã¾ãã<br />
å®éã«ã¯ã1ã¤åºããæ¸ãè¾¼ããã¨ãããã¨ãç¶ãã¦ããã°è¯ãã§ããã<br />
ã¾ã¨ãã¦æ¸ãè¾¼ããã確å®ã§ãã<br />
ããã§ã¯å³ãå°ãªããããã®ã§ã¾ã¨ãã¦æ¸ãã ãã§ããç¬<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama422.jpg" alt="" width="478" height="373" class="aligncenter size-full wp-image-12639" /></p>
<p>åè§å½¢CDGFã®é¢ç©ãæ±ããã®ã§ãæ¬å½ã¯ããã§ååçãã¯åºãã¾ãã<br />
ã¡ãã£ã¨ããå ¬å¼ãè¦ãã¦ããã°æ°åç§ãããã°çããåºã¾ãã<br />
ï¼ããããç§ã®çå¾ããããè¦ã¦ããããããã«çãã ãã¦è¯ãã§ãããï¼</p>
<p>ããããæ®éã®ä¸å¦çããã®åè§å½¢ã®é¢ç©ãæ±ããã«ã¯åè§å½¢ã®å½¢ãç¹å®ããå¿ è¦ãããã¾ãã<br />
ãããããã¯çãã«ãã©ãçããæ å ±ãã©ããããããã¾ããã</p>
<p>å¾ã§ç¢ºèªãã¦ã¿ã¾ãããã</p>
<h3>åè§å½¢ã®é¢ç©ã¯ä¸è§å½¢ã®2ã¤å</h3>
<p>ä¾ãã°ãåè§å½¢ãå°å½¢ã ã£ãã¨ãã¦ãã軸ã«å¹³è¡ãªç´ç·ã§ãªãå ´åã¯ã2ç¹éã®è·é¢ã§ç·åï¼ä¸åºã¨ä¸åºï¼ã®é·ããåºãã®ã«è¦å´ãããã¨ãããã¾ãã</p>
<p>ããã§ãã»ã¨ãã©ã«éç¨ããä¸è§å½¢ã®é¢ç©ãå©ç¨ãããã¨ãèãã¾ãã</p>
<p>åè§å½¢ã®é¢ç©ãæ±ããã¨ãããã¨ã¯ãä¸è§å½¢ã®é¢ç©ãå ã«ãªã£ã¦ããã¨ããäºå®ã使ãã°ãã©ã®ãããªåè§å½¢ã§ããä¸è§å½¢ã®åãã¨èãããã¨ãã§ããã®ã§é¢æ°ã®å ´åã«éããªãã¦ããä¸è§å½¢ã®é¢ç©ã§èãã¦ã¿ããã¨ãããã¨ãåªå ããã¨è¯ãã§ãã</p>
<p>ã ãããããã§ã¯ä¸è§å½¢ã®é¢ç©ãæ±ããå½¢ã§èª¬æãã¾ãã</p>
<p>åããæãããã«ã¡ãã£ã¨å³ã«æ¸ãè¶³ãã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama424.jpg" alt="" width="484" height="374" class="aligncenter size-full wp-image-12644" /></p>
<p>å¾å éã«ãªãã¾ããããç´ç· FG ã¯ã<br />
ã\(\displaystyle \left(\hspace{6pt}-3\hspace{10pt},\hspace{10pt}\frac{9}{2}\hspace{10pt}\right)\)<br />
ã\((\hspace{15pt}4\hspace{12pt},\hspace{12pt}8\hspace{12pt})\)</p>
<p>ãã®2ç¹ãéãã®ã§ç´ç· FG ã1æ¬¡é¢æ° \(y=ax+b\) ã¨ããã¨</p>
<p>ã\(\begin{eqnarray}<br />
\displaystyle a&#038;=&#038;\frac{8-(\frac{9}{2})}{4-(-3)}= \frac{\frac{7}{2}}{7}= \frac{7}{2}\times \frac{1}{7}\\<br />
\displaystyle &#038;=&#038; \frac{1}{2}<br />
\end{eqnarray}\)</p>
<p>ããããã\(\displaystyle y=\frac{1}{2}x+b\)</p>
<p>ããã«ç¹ F,G ã©ã¡ãããä»£å ¥ãã㨠\(b\) ãæ±ã¾ãã¾ãã<br />
ã\(\mathrm{G}\,(\,4\,,\,8\,)\)<br />
ãä»£å ¥ããã¨<br />
ã\(\displaystyle 8=\frac{1}{2}\times (4)+b\\ \\<br />
8=2+b\)<br />
ããããã\(b=6\)</p>
<p>ãã£ã¦ç´ç·FGã¯<br />
ã\(\displaystyle y=\frac{1}{2}x+6\)</p>
<p>ï¼ãã®å¼ãæ±ããã¨ããã¯å¥ç´ã§ç°¡åã«æ±ãã¦ããã°è¯ãã§ãããï¼</p>
<p>å¾ããåããªã®ã§ãã㯠\(\ell\) ã¨å¹³è¡ã ã¨ãããã¨ããããã¾ãã<br />
åè§å½¢CDGFã¯å°å½¢ã ã¨ãããã¨ã¯ãããã¾ãããä¸åºã¨ä¸åºã2ç¹éã®è·é¢ã§åºããã¨ãã¦ãé«ãã¯ã©ããã¾ããï¼</p>
<p>åç·ä¸ããã¦ããããªãã¦ãã¨ã¯ãã¾ããã<br />
髿 ¡çãªãç¹ã¨ç´ç·ã®è·é¢ã®å ¬å¼ã使ã£ã¦ãã¨ãããã¨ãã§ãã¾ãããã¾ããã</p>
<p>å³ãè¦ã¦æ°ãã¤ãã¦ããã¨æãã¾ããã<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama424.jpg" alt="" width="484" height="374" class="aligncenter size-full wp-image-12644" /><br />
大ããä¸è§å½¢ OFG ããå°ããä¸è§å½¢ OCD ãå¼ãã¾ãã</p>
<p>ã\(åè§å½¢\mathrm{CDGF}ï¼\color{red}{\triangle \mathrm{OFG}} -\color{magenta}{\triangle \mathrm{OCD}}\)</p>
<p>ãã®é¢ç©è¨ç®ã¯ããããèãããã¾ãããä¸çªå¤ãå½¢ã§æ±ãã¦ã¿ã¾ãããã<br />
ï¼ä½åº¦ãè¨ãã¾ããç§ã®çå¾ã¯ãã£ã¨ç°¡åã«çããåºãã¦ãã¾ãã¾ãããï¼<br />
ã\(\triangle \mathrm{OFG}\)ãã®é¢ç©ã¯<br />
ç´ç· FG ã®åçã¨åç¹ãçµã¶ç·åãåºè¾ºã¨ãã¦ä¸è§å½¢ã2ã¤ã«åãã¾ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama425.jpg" alt="" width="465" height="364" class="aligncenter size-full wp-image-12646" /><br />
ç´ç· FG ã®åçã H ã¨ããã¨ãåºè¾º OH ã¨ããä¸è§å½¢ã«2ã¤ã«åãããã¨ãã§ãã¾ãã</p>
<p>ã\(\color{red}{\triangle \mathrm{OFG}=\triangle \mathrm{OFH}+\triangle \mathrm{OGH}}\)</p>
<p>2ã¤ã®ä¸è§å½¢ã®<span class="red b">åºè¾ºã¯å ±é</span>ã§ã\(\mathrm{OH}=6\)ãã¨ãªã£ã¦ãã¾ãã</p>
<p>é«ãã¯ã<br />
ã\(\color{red}{é ç¹ãã y 軸ã¸ã®åç·ã®é·ã}\)<br />
ã«ãªãã¾ãã®ã§<span class="red b">ããããã® \(x\) 座æ¨</span>ã§ãã</p>
<p>ãã£ã¦</p>
<p>ã\(\begin{eqnarray}<br />
\triangle \mathrm{\color{red}{OFG}}&#038;=&#038;\triangle \mathrm{OFH}+\triangle \mathrm{OGH}\\<br />
\displaystyle &#038;=&#038;\frac{1}{2}\times \color{blue}{6}\times \color{magenta}{3}+\frac{1}{2}\times \color{blue}{6} \times \color{magenta}{4}\\ &#038;=&#038;9+12\\<br />
&#038;=&#038;\color{red}{21}<br />
\end{eqnarray}\)</p>
<p>ããããã\(\color{magenta}{\triangle \mathrm{OCD}}\)ãã®é¢ç©ãå¼ãã°è¯ãã®ã§ãã<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama4262.jpg" alt="" width="397" height="318" class="aligncenter size-full wp-image-12648" /><br />
ã\(\begin{eqnarray}<br />
\color{magenta}{\triangle \mathrm{OCD}}&#038;=&#038;\triangle \mathrm{OCE}+\triangle \mathrm{ODE}\\<br />
\displaystyle &#038;=&#038;\frac{1}{2}\times \color{blue}{3}\times \color{magenta}{\frac{3}{2}}+\frac{1}{2}\times \color{blue}{3} \times \color{magenta}{2}\\<br />
\displaystyle &#038;=&#038;\frac{9}{4}+3\\<br />
\displaystyle &#038;=&#038;\frac{9+12}{4}\\<br />
&#038;=&#038;\color{magenta}{\frac{21}{4}}<br />
\end{eqnarray}\)ãã<br />
ã<br />
ãã£ã¦æ±ããåè§å½¢ CDGF ã®é¢ç©ã¯</p>
<p>ã\(\begin{eqnarray}<br />
åè§å½¢\mathrm{CDGF}&#038;=&#038;\color{red}{\triangle \mathrm{OFG}} -\color{magenta}{\triangle \mathrm{OCD}}\\<br />
\displaystyle &#038;=&#038;\color{red}{21}-\color{magenta}{\frac{21}{4}}\\<br />
\displaystyle &#038;=&#038;\frac{84-21}{4}\\<br />
\displaystyle (çã)&#038;=&#038;\frac{63}{4}\hspace{10pt}(\mathrm{cm^2})<br />
\end{eqnarray}\)</p>
<p>ããã¾ã§ãã¦ä½ã§ããã<br />
<span class="red b">åæ°è¨ç®ã®ã¨ãã¯åæ¯ãä¸ã¤ã«ãã¦ãååã®è¨ç®ã«éä¸ãã</span>ã¨è¨ç®ãã¹ã¯æ¸ãã¾ãã</p>
<p>ãã¦çãã®æ°å¤ã¯åºã¾ããããä¸ã¤èª¬æãå ãã¦ããã¾ãã</p>
<p>åé¡ã®åä½ã®èª¬æã§ã<br />
ãã座æ¨è»¸ã®åä½ã®é·ãã 1 cmã¨ãã¾ããã<br />
ã¨æ¸ãã¦ããã¾ãã</p>
<p>詳ããããã¨é·ããªãã¾ãã®ã§ç°¡åã«è¨ãã¨ã<br />
ãã座æ¨è»¸ã® 0 ãã 1 ã¾ã§ã<br />
ã座æ¨ã®åä½ã¨ããã¾ãã®ã§ã座æ¨ä¸ã§ã®é·ãããã®ã¾ã¾ cm ã¨ãã¦åä½ãã¤ãã¦èãã¦è¯ãã§ãããã¨ãããã¨ã§ãã</p>
<h3>確å®ã«åå以ä¸ã¨ãã対ç</h3>
<p>ãã¦ãå ¨åè§£ãã¦è¦ãææ³ã¯ãããã§ãããã</p>
<p>ãããã«å¾åã¯ããã«ã¯æãã¤ããªãããããã¾ããããåºæ¬åé¡ãå¤ãã£ãã§ãããã<br />
æ¨ã¦ãåé¡ãããããªãã®åºæ¬åé¡ãæ¾ããã¨æãã¾ãã</p>
<p>説æããã©ãã¦å¤§å¤ããã«è¦ãã¾ãããå®éã«è§£ãã¦ã¿ãã°30åãå¿ è¦ããã¾ããã</p>
<p>æºç¹ãçããªãå°ãã ãå¿ç¨ã®æ¼ç¿ãããæ¹ãè¯ãã§ããã<br />
å¹³åç¹ä»¥ä¸ã60ç¹ãã70ç¹ãçãã®ã§ããã°ã<br />
é£ããåé¡éããããæç§æ¸ã§ãããã®ã§åºæ¬ã®ç¹°ãè¿ãã§å¯¾çããã°ç¢ºå®ã«ã¨ãã¾ããã</p>
<p>é å¼µã£ã¦ä¸ããï¼</p>
<p>å¹çå¦ç¿ç ç©¶ä¼ãæç°ãåª</p>
<p>â»ï¼ä¾é ¼äººã§ããï¼<br />
å ¨ã¦ã®éå»åï¼4åï¼ã®ãªãªã¸ãã«è§£èª¬ã¨å¯¾çãå ¬éãã¦é ããæç°å çã大å¤ãããã¨ããããã¾ããã</p>
<p>å人ããåä¾ãã¡ãã£ã¨ã ãããã£ã¦ããã¨ç´ ç´ã«ç§ã«è©±ãã¦ãããã¨åãã§ãã¾ããã<br />
ããããåé¨ã¾ã§åå¼·ãã¦ããä¸ã§ãã¤ã¾ãããæã«æãã¦é ããããªãã¨ãããã¨å£ã«ãã¦ããã®ã§ã髿 ¡åé¨å¯¾çè¬åº§ãè¦ã太éãããããããã¾ããã</p>
<p>ã⇒ã<a href="https://fromhimuka.com/oboetaro.html">髿 ¡åé¨å¯¾çè¬åº§ãè¦ã太éã</a></p>
<p>ãã®é«æ ¡åé¨å¯¾çè¬åº§ãè¦ã太éãããåä¾ã®åé¨ã®æã«ç¥ã£ã¦ãããªãã°ã<br />
æç°å çã«åºä¼ã£ã¦ãããªãã°ãåä¾ã¯èªåã«èªä¿¡ãæã£ã¦è©¦é¨ã«æã¿ã親ã®ç§ã¯æ°æã¡ã«ä½è£ããã£ã¦åé¨çã®æ¯åããã©ãã¼ã§ãã¦ããã¨æãã¾ãã<br />
ãããæ®å¿µã§ãªãã¾ããã</p>
<p>ãããããããã®å¾ãã®è¬åº§ã¯åé¨å¯¾çã ãã®ãã®ã§ã¯ãªãã¨ç¥ããå®ã¯ç§ãã¡ãã§ä»ç¾å¨å¦ã°ãã¦ããã ãã¦ãã¾ãã<br />
æ¥ããããªããVIPä¼å¡ã¨ãããã¨ã§ãå人ã®åé¨çãæã¤è¦ªã®æ©ã¿ãç¥ããä»åã®ãªãªã¸ãã«è§£èª¬ã¨å¯¾çãå¼ãåãã¦é ããã®ã§ãã</p>
<p>ãã®ææã«æç°å çã®é«æ ¡åé¨å¯¾çè¬åº§ãè¦ã太éããç¥ããã¨ãåºæ¥ã人ã¯è¶ ã©ããã¼ã§ããï¼<br />
ãã²ã髿 ¡åé¨å¯¾çè¬åº§ãè¦ã太éããã¾ãã¯è¦ãã¦ã¿ã¦ãã ããã<br />
ä»éã£ã¦ãã塾ã¯ä½ãæãã¦ããã¦ããã®ãï¼ ã¨ä¸å®ã«ãªãããããªããã¨ç§ã¯ç¢ºä¿¡ãã¾ãã<br />
ããã ãã¹ã´ã¤ã®ã§ãã</p>
<p>åé¨çã®ã¿ãªããï¼ã<br />
ã©ããåé¨ã ãã®ããã ãã§ãªãã大人ã«ãªã£ã¦ãããå½¹ã«ç«ã¤åå¼·ãæ¥½ãã¿ãªããé å¼µã£ã¦ãã ããã</p>
<p>ã⇒ã<a href="https://arakannotie.com/12656.html">å¼ççå ¬ç«é«æ ¡å ¥è©¦(å¹³æ30年度)ã®æ°å¦éå»åé¡ã®è§£èª¬ã¨å¯¾ç</a></p>
<p>å¼ççå ¬ç«é«æ ¡å ¥è©¦2018å¹´ã®æ°å¦éå»åé¡ ç¬¬1åç®ã®è§£èª¬ã¨å¯¾çã«ãªãã¾ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/12674.html">å¼ççç«é«æ ¡å ¥è©¦(2018éå»å) 確çã¨å³å½¢åé¡ã®è§£èª¬ã¨ãã¤ã³ã</a></p>
<p>å¼ççå ¬ç«é«æ ¡å ¥è©¦2018å¹´ã®æ°å¦éå»åé¡ ç¬¬2åç®ã®ç¢ºçã¨å³å½¢åé¡ã®è§£èª¬ã¨å¯¾çã«ãªãã¾ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/12697.html">å¼ççå ¬ç«é«æ ¡å ¥è©¦ã®éå»åããè¦åæ§ã®åé¡ãæ»ç¥ããæ¹æ³2</a></p>
<p>å¼ççå ¬ç«é«æ ¡å ¥è©¦2018å¹´ã®æ°å¦éå»åé¡ ç¬¬3åç®ã®ãªãªã¸ãã«è§£èª¬ã¨å¯¾çã«ãªãã¾ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/13166.html">2019å¹´(å¹³æ31å¹´)度å¼ççå ¬ç«é«æ ¡å ¥è©¦æ°å¦ã®åé¡ã¨è§£èª¬</a></p>
<p>\(2019\)å¹´ã®åé¡ã詳ãã解説ããä¼ããã¦ãã¾ãã®ã§è¦ã¦ããã¨è¯ãã§ãã
<!-- WP QUADS Content Ad Plugin v. 2.0.92 -->
<div class="quads-location quads-ad2" id="quads-ad2" style="float:none;margin:0px 0 0px 0;text-align:center;">

</div>