<p>å¼ççå ¬ç«é«æ ¡å ¥è©¦ï¼å¹³æ30年度ï¼ã®æ°å¦éå»åé¡ã®ããã§ããè¦ãããªããªãªã¸ãã«è§£èª¬ã§ãã<br />
æ°å¦ã ãã«ãªãã¾ãããç¹å¥å¯¾çä»ãã®ãã®è§£èª¬ã¯æ°¸ä¹ ä¿åçã«ãã¦ãè¯ãããã価å¤ãããã¾ãã<br />
ç¹ã«ãéå»åãè§£ãã¦ãã¦ãå¹³åç¹ããããããªãããã¨æ©ãã§ããæ¹ã«ã¯å¿ è¦ã§ãã<br />
<!--more--><br />
â»ï¼ä¾é ¼äººã§ããï¼<br />
ãã®è¨äºã¯ããã®ãµã¤ãã§åãä¸ãã¦ããç§å¦çãªãã¨ã§ã¯ããã¤ãç¸è«ã«ä¹ã£ã¦ããã£ã¦ããç§å¦è ã®æ¹ã«ãé¡ããã¦æ¸ãã¦ããã ãã¾ããã<br />
å®ã¯ãå人ã®ãåããã髿 ¡åé¨ãæ§ãã¦ããã®ã§ãããã©ããã¦ãå¹³åç¹ãåããªãã¨æ©ãã§ãããæ¯ããã®æ§åãã¿ã¦ãç¾å¨ã¯åé¨å奿å°ã®ããã¨ãã¦å ¨å½ã§æ´»èºããã¦ããæ¹ãªã®ã§ãOKã¯ããããªããããããªãã¨ãã¡å ã§ãé¡ããããããè¯ããããã¨å¿«ãå¼ãããã¦ãã ããã¾ããã<br />
ç§ãå 容ãå®å ¨ã«ãä¼ãã§ããããããã¾ããããã§ããã ãå¿ å®ã«ãä¼ããã¾ããã</p>
<p>ããªãã¯ãã®è§£èª¬ãèªãã§ãããããªãã¨ç¥ã£ã¦ãããã¨ããã¾ããï¼<br />
ç§ãéå»ã«ãããããªå¡¾ã«æ¯åãéããããã©ããã®ãããªè§£èª¬ã¯èãããã¨ãããã¾ããã<br />
ã¾ããä½åãåé¡éãè²·ãã¾ãããããã¾ã§ã®è§£èª¬ã¯ã¿ããã¨ããã¾ãããã<br />
å ¨å½ã®å ¬ç«å ¥è©¦ã大å¦å ¥è©¦ã§ãéç¨ããå¯¾çæ¹æ³ã ããã§ãã<br />
æ¯åã®åé¨ã®ã¨ãã«ããã°ãããå°ãæ¥½ãªæ°æã¡ã§ããããããããã¾ãããç¬</p>
<p>ã§ã¯ãè¶ å¼·åãªè§£èª¬ã¨å¯¾çãã覧ä¸ããã</p>
<h3>å¼ççå ¬ç«é«æ ¡æ°å¦å¹³æ30年度éå»åã®è§£ãæ¹ã¨è§£èª¬</h3>
<p>åé¡ã¯å¼ççç«ç·åæè²ã»ã³ã¿ã¼ã«ãããã¾ãã</p>
<p>⇒ã<a href="https://arakannotie.com/wp-content/uploads/2018/10/2018saitama.pdf" rel="noopener" target="_blank">2018å¼ççç«é«ç妿 ¡å ¥è©¦åé¡</a></p>
<p>æåã«ãä¼ããã¦ããã¾ãã</p>
<p>ã\(\large{\color{magenta}{\fbox{å¹³åç¹ï¼44.0}}}\)</p>
<p>ããã¯ä¿¡ããããªããã¨ãããæ®éã«å¯¾çããã°ããå¾ãªãæ°åã§ãã<br />
ç¾æç¹ã§å¹³åç¹ãã¨ããªãã¨æãã人ã¯ã<br />
æç§æ¸ç¨åº¦ã®åºç¤åé¡ã ãã§å¿ ãå°éã§ããããã«ãªãã¾ãã®ã§<span class="red b">絶対ã«ãããããªãã§ãã ãã</span>ã</p>
<p>ãã ããããã§ããè§£èª¬ã¯æéã®éãããã1åéãã®èª¬æã«ãªãã®ã§ãã¾ãæå¾ ããªãã§ä¸ããã<br />
ä½ã§ãããã§ãããæå¾ ããã¨ãããªãã¨ã¯ããã¾ãããç¬</p>
<p>â»ï¼ä¾é ¼äººã®æ³¨éï¼<br />
éä¸ã§ä½è¨ãªèª¬æå ¥ãã¦ãã¿ã¾ããã<br />
ã塾ã«è¡ã£ã¦ãã¦å¹³åç¹ãç®æ¨ã«ãã¦ãããåéã¸ã®ãã¬ã¼ã³ãã§ãããï¼<br />
大ããªå£°ã§ã¯è¨ãã¾ãããããã®å¡¾ãããæ¹ãè¯ãã§ãããã<br />
ã¨ãã£ããã£ã¦ãã¾ãããç¬<br />
模æ¬è©¦é¨ãªã©ã§çå¾ã«æ®éã«æºç¹åãããæ¹ãªã®ã§ã广ã®åºãªããè¦ªã®æ°ä¼ã塾éãããå«ããªæ¹ã§ãã</span></p>
<h4>第1åï¼å°åéåï¼ã®è§£èª¬</h4>
<h5>æåå¼ã®è¶³ãç®</h5>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(1)ã\(4x+x\)ããè¨ç®ããªããã<br />
</div></div></p>
<p>æ®éã«åé¡é ãã¾ã¨ããã ãã§ããã<br />
ä¿æ°ã®è¶³ãç®ã«ãªãã¾ããã\(x\) ã¨ããé ã«ã¯ä¿æ°1ãçç¥ããã¦ãããã¨ãå¿ããªãããã«ãã¾ãããã</p>
<p>ã\(4x+x=(4+1)x=\underline{5x}\)</p>
<h5>å æ¸ä¹é¤ã®åªå é ä½</h5>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(2)ã\(6-4\div(-2)\)ããè¨ç®ããªããã<br />
</div></div></p>
<p>ããã¯ç®æ°ã¨åãã§è¨ç®é åºãééããªãããã«ãã¾ãããã<br />
<span class="red b">ããç®ãå²ãç®ã¯ãè¶³ãç®ãå¼ãç®ããå </span>ã§ãã</p>
<p>ã\(6-4\div(-2)\\ \\<br />
=6-\{4\div (-2)\}\\ \\<br />
=6-(-2)\\ \\<br />
=6+2=\underline{8}\)</p>
<p>ç§ã®çå¾ã®ããã«<span class="red b">å²ãç®ãéæ°ã®ããç®</span>ã¨ãããã¨ãã¯ã»ã¥ãã¦ãã人ã¯ãéã£ãæ¹æ³ã«ãªãã¾ããã©ã¡ãã§ãè¯ãã§ãã</p>
<p>ã\(6-4\div(-2)\\ \\<br />
\displaystyle =6-4\times \left(-\frac{1}{2}\right)\\ \\<br />
=6+2=\underline{8}\)</p>
<h5>æåå¼ã®ä¹æ³é¤æ³</h5>
<p>ã<br />
ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(3)ã\(16a^2b\div (-8b)\times a\)ããè¨ç®ããªããã<br />
</div></div></p>
<p>æåå¼ã®è¨ç®ã§ãã<br />
ãããç¿ã£ãæ¹æ³ã«ãã£ã¦éãè¨ç®æ¹æ³ã«ãªãã¾ãããã©ã¡ãã§ãè¯ãã§ãã<br />
ããç®å²ãç®ã ããªã®ã§é çªã«è¨ç®ãã¾ãã</p>
<p>ã\(16a^2b\div (-8b)\times a\\ \\<br />
=-2a^2\times a\\ \\<br />
=\underline{-2a^3}\)</p>
<p>å²ãç®ã¯éæ°ã®ããç®ã¨ãã¦ãã人ã¯ã</p>
<p>ã\(16a^2b\div (-8b)\times a\\ \\<br />
\displaystyle =\frac{\color{red}{16}a^2\color{blue}{b}\times a}{-\color{red}{8}\color{blue}{b}}ã←ï¼\color{red}{ç´åå©ç¨}ï¼\\ \\<br />
=-2a^2\times a\\ \\<br />
=\underline{-2a^3}\)</p>
<p>ãã®ç¨åº¦ã®æåå¼ã ã¨å·®ã¯åºã¾ãããã<br />
æåå¼ãããããããå ´åã¯åæ°ã«ããã¨ãã¹ã¦åãæ¹æ³ã§çæéã§çµããã¾ãã</p>
<p>符å·ï¼ï¼ãï¼ï¼ã«ã¯æ°ãã¤ãã¦ããã¾ãããã</p>
<h5>ç¡çæ°ã®æçåã¨æ¸æ³</h5>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(4)ã\(\displaystyle \frac{9}{\sqrt{3}}-2\sqrt{3}\)ããè¨ç®ããªããã<br />
</div></div></p>
<p>ç¡çæ°ã®è¨ç®ç¢ºèªåé¡ã§ããåæ¯ã®æçåã¨è¶³ãç®ã§ãã</p>
<p>åæ¯ã®æçåã®èª¬æã¯å¿ è¦ã¯ãªãã¨æãã¾ãããã¦ãããã«ãã£ã¦ããã¾ãã</p>
<p>ã\(\displaystyle \frac{9}{\sqrt{3}}-2\sqrt{3}\\ \\<br />
\displaystyle =\frac{9\times \color{red}{\sqrt{3}}}{\sqrt{3}\times \color{red}{\sqrt{3}}}-2\sqrt{3}ã←ï¼\color{red}{æçåã§ã}ï¼\\ \\<br />
\displaystyle =\frac{\color{blue}{9}\times \sqrt{3}}{\color{blue}{3}}-2\sqrt{3}ã←ï¼\color{blue}{ç´åã§ã}ï¼\\ \\<br />
=\color{magenta}{3}\sqrt{3}-\color{magenta}{2}\sqrt{3}ã←ï¼ã«ã¼ãã®ä¸ãåããªã®ã§æ´æ°é¨åã®å¼ãç®ï¼\\ \\<br />
=\underline{\sqrt{3}}\)ã</p>
<p>åé¡ã®æåã®ãã¼ã¸ã«æ¸ãã¦ããã¾ãããç¡çæ°ã¯ãã®ã¾ã¾ã§è¯ãã¨ããã¾ãã<br />
æ®éã¯è¿ä¼¼ãã¾ããã®ã§åé¡ã«æ¸ãã¦ããªãã¦ãç¡çæ°ã®ã¾ã¾ã§è¯ãã§ããã<br />
ãã ãã<span class="red b">忝ã®ç¡çæ°ã¯æçåãã</span>ããã«æç¤ºããã¾ãã</p>
<h5>å æ°åè§£ã®æ³¨ç®ãã¤ã³ã</h5>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(5)ã\(x^2+x-12\)ããå æ°åè§£ããªããã<br />
</div></div></p>
<p>å æ°åè§£ã®ç¬¬ä¸æ©ã¯å ±éå æ°ã®æãåºãã§ããããã¾ããã®ã§ã<br />
宿°é ã®ã\(-12\)ã㨠\(x\) ã®1次ã®é ã®ä¿æ°ã\(+1\)ãã«çç®ãã¾ãã</p>
<p>ããã¦ã\(12\)ãã¨ãªãã<br />
è¶³ãè¶³ãå¼ããããã¦ã\(+1\)ãã¨ãªãçµã¿åãããæ¢ãã¾ãã</p>
<p>ããã¦ã\(12\)ãã¨ãªãã®ã¯<br />
ã\(\color{black}{\fbox{1 × 12}}\) ã\(\color{black}{\fbox{2 × 6}}\) ã\(\color{red}{\fbox{3 × 4}}\)<br />
å¾ã¯éã«ãªãã ããªã®ã§ãã®çµã¿åããã ãã§è¯ãã§ãã<br />
宿°é ã¯-12ãªã®ã§ã©ã¡ããã«ãï¼ããã¤ãã¦ãå ããã¨ï¼1ã«ãªãã®ã¯ã<br />
ã\(\color{red}{\fbox{(-3) × 4}}\)ãã§ãã</p>
<p>ã ãã<br />
ã\(x^2+x-12=\underline{(x-3)(x+4)}\)</p>
<p>åé¡ã«ãå æ°åè§£ããªããããã¨ããã°å¿ ãå æ°åè§£ã§ãã¾ãã<br />
å æ°åè§£ããå¾ãå±éãã¦<span class="red b">åé¡ã¨åãå¼ã«ãªãã°æ£è§£</span>ã§ãã</p>
<h3>é£ç«æ¹ç¨å¼ãä»£å ¥æ³ã§è§£ãã¨ãã®è¨ç®ãã¹ãæ¸ããã³ã</h3>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(6)ãé£ç«æ¹ç¨å¼ã\( \begin{cases}<br />
 2x-3y=11\\<br />
 y=x-4\\<br />
\end{cases}\)ããè§£ããªããã<br />
</div></div></p>
<p><span class="red b">é£ç«æ¹ç¨å¼ã®è§£ãæ¹ã®åºæ¬ã¯ä¸æåæ¶å»</span>ã§ãã</p>
<p>ã\(y=x-4\)ããã\(-x+y=-4\)ãã¨ãã¦ã<br />
å æ¸æ³ã使ãã¾ããããã§ã¯ä»£å ¥æ³ãæ©ãã§ãããã</p>
<p>ã\( \begin{cases}<br />
 2x-3y=11\\<br />
 y=x-4\\<br />
\end{cases}\)</p>
<p>ã\( 2x-3y=11\)ãã® \(y\) ã«ã\(y=\color{red}{x-4}\)ããä»£å ¥ãã¾ãã<br />
ä»£å ¥ããã¨ãã®ãã¤ã³ãã¯ç¬¦å·ã«é¢ä¿ãªãï¼ãã£ãï¼ãã¤ãããã¨ã§ãããããã®èªè ã«ã¯ãä¼ããã¦ãã¾ãããã</p>
<p>ä»£å ¥ããã¨ãã¯ãã£ãã¤ããã¨ãã¹ãæ¸ãã¾ãã</p>
<p>ã\(\begin{eqnarray}<br />
2x-3y&#038;=&#038;11\\<br />
2x-3\color{red}{(x-4)}&#038;=&#038;11ãï¼ä»£å ¥ï¼\\<br />
2x-3x\color{red}{+12}&#038;=&#038;11ãï¼ç¬¦å·æ³¨æï¼\\<br />
2x-3x&#038;=&#038;11\color{red}{-12}ãï¼ç§»é ï¼\\<br />
-x&#038;=&#038;-1\\<br />
x&#038;=&#038;1<br />
\end{eqnarray}\)</p>
<p>ããã§çµãã£ãããã¡ã§ããã<br />
ãé£ç«æ¹ç¨å¼ãè§£ããªãããããªã®ã§ã\(y\)ããæ±ãã¾ãã<br />
ï¼è§£çç¨ç´ã«ããã®ã§å¿ãããã¨ã¯ãªãã§ããããã©ãï¼</p>
<p>ã\(y=x-4\)ãã«ã\(x=1\)ããä»£å ¥ããã®ãæ©ãã§ãããã</p>
<p>ã\(y=x-4\\<br />
=(1)-4\\<br />
=1-4\\<br />
=-3\)</p>
<p>çãã\(\underline{x=1\,,\,y=-3}\)</p>
<h4>ï¼æ¬¡æ¹ç¨å¼ã®è§£ãæ¹é åºã¨è§£ã®å ¬å¼</h4>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(7)ã\(3x^2-x-1=0\)ããè§£ããªããã<br />
</div></div></p>
<p>ãæ¹ç¨å¼ãè§£ããªããããã¨ãããã¨ã¯ã<br />
ãã®æ¹ç¨å¼ãæºãã \(x\) ãæ±ããªãããã¨ãããã¨ã§ãã<br />
<span class="red b">æ¹ç¨å¼ã®è§£ã¨ã¯ãã®æ¹ç¨å¼ãæºãããã®</span>ã®ãã¨ãªã®ã§ã<br />
ãæ¹ç¨å¼ã®è§£ãæ±ããªããããã¨åãã§ãã</p>
<p>ï¼æ¬¡æ¹ç¨å¼ãè§£ãã¨ãã¯å æ°åè§£ãå©ç¨ããã®ãåªå ã§ããã<br />
ãã®ï¼æ¬¡æ¹ç¨å¼ã¯å æ°åè§£ã§ãã¾ããã</p>
<p>è§£ã®å ¬å¼ã®ç¢ºèªåé¡ã§ãã</p>
<p>ï¼æ¬¡æ¹ç¨å¼ã\(ax^2+bx+c=0\)ãã®è§£ã¯<br />
ã\(\large{\displaystyle \color{red}{x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}}} \)<br />
å°ãæ¹ã¯ããã¤ãããã¾ãããè¦ããæ¹ãã¯ããã§ãã<br />
試é¨ä¸ã«å°ãã«ã¯è©¦é¨æéããã£ãããªãã</p>
<p>è¦ãæ¹ã¯ç°¡åã§ãã<br />
è§£ã®å ¬å¼ã声ã«åºãã¦ï¼ï¼åå±ããããããæ°æ¥éãã£ã¦ãã ããã<br />
ããã¨ãã¯ã¹ã¤ã³ã¼ã«ã»2aåã®ã»ãã¤ãã¹bãã©ã¹ãã¤ãã¹ã«ã¼ãbã®2ä¹ãã¤ãã¹4acã<br />
åæã«å£ãè¦ãã¦ããã¾ãã</p>
<p>ã\(3x^2-x-1=0\)ãã¯<br />
ã\(\color{red}{a=3}\,,\,\color{blue}{b=-1}\,,\,\color{magenta}{c=-1}\)ã<br />
ãªã®ã§ãããããè§£ã®å ¬å¼ã«ä»£å ¥ãã¦ããã¾ãã</p>
<p>ã\(\displaystyle x=\frac{-(\color{blue}{-1})\pm \sqrt{(\color{blue}{-1})^2-4\cdot (\color{red}{3})\cdot (\color{magenta}{-1})}}{2\times \color{red}{3}}\\<br />
\displaystyle =\frac{1\pm \sqrt{1+12}}{6}\\<br />
\displaystyle =\frac{1\pm \sqrt{13}}{6}ãï¼çãï¼\)ã</p>
<h4>2ä¹ã«æ¯ä¾ãã颿°ã®æ¯ä¾å®æ°ã®æ±ºå®ã¨æãè¾¼ã¿æ³¨æç¹</h4>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(8)ã颿° \(y=ax^2\)ãã«ã¤ãã¦ï¼\(x\) ã®å¤åãã\(-1≦x≦2\)ãã®ã¨ãï¼\(y\) ã®å¤åã¯ã\(ï¼8≦y≦0\)ãã¨ãªãã¾ããããã®ã¨ãï¼\(a\) ã®å¤ãæ±ããªããã<br />
</div></div></p>
<p>2æ¬¡é¢æ°ãæ¾ç©ç·ã®åé¡ã§ãã<br />
颿°ã®åé¡ã«åãçµãã¨ãã¯ã°ã©ããã§ããã ãæ¸ããã¨ã§ãã<br />
颿°å ¨ä½ã§ã¯ãã£ã¨ãããã¨ã¯ããã¾ãããå¾ã®åé¡ã«ããã¾ãã®ã§ããã§èª¬æãã¾ãã</p>
<p>ã\(y=ax^2\)ãã®ã°ã©ã㯠\(a\) ãæ£ã®ã¨ãã¨è² ã®ã¨ãã§å½¢ãä¸ä¸éã«ãªãã¾ãã</p>
<p>ã\(a\) ãæ£ã®ã¨ãã¯ä¸ã«å¸ï¼ä¸ã«éãï¼å½¢<br />
ã\(a\) ãè² ã®ã¨ãã¯ä¸ã«å¸ï¼ä¸ã«éãï¼å½¢</p>
<p><img src="https://arakannotie.com/wp-content/uploads/2018/10/houbutusen1.jpg" alt="" width="374" height="391" class="aligncenter size-full wp-image-12572" /></p>
<p>ã«ãªãã¾ãã</p>
<p> ã\(y\) ã®å¤åã¯ã\(\color{red}{ï¼8≦y≦0}\)</p>
<p>ã¨ãªãã¨ããã° \(a\) ã¯<span class="red b">è² ã®ã¨ã</span>ããããå¾ã¾ããã</p>
<p>ããã§å©ç¨ã§ããã®ãå¼ççã®å ´åã¯ãå¥ç´ãã§ãã<br />
è§£çç¨ç´ã¨å¥ã«è¨ç®ç¨ç´ã¨ãã¦å¥ç´ãé ããã¾ãã®ã§ããã®ç´ã«å¤§ã¾ããªã°ã©ããæ¸ãã¦ã¿ãã¨ããã«ãããã¾ãã</p>
<p>ã\(x\) ã®å¤åãã\(-1≦x≦2\)ãã®ã¨ãï¼\(y\) ã®å¤åã¯ã\(ï¼8≦y≦0\)</p>
<p>ãã°ã©ãã«ããã¨ã\(y=ax^2\) ã®ã°ã©ã㯠\(y\) 軸ã軸ã¨ãã¦<span class="red b">å·¦å³å¯¾ç§°</span>ãªã®ã§</p>
<p><img src="https://arakannotie.com/wp-content/uploads/2018/10/houbutusen2.jpg" alt="" width="407" height="347" class="aligncenter size-full wp-image-12573" /></p>
<p>ãããã \(x=2\) ã®ã¨ãã« \(y=-8\) ã¨ãªãã¯ãã§ãã<br />
ï¼åç¹ãæå¤§ã§ \(x=-1\) ã®ã¨ãã¯æå¤§ãæå°ã«é¢ä¿ããªããï¼</p>
<p>ã\(y=ax^2\) ã®<span class="red b">æ¯ä¾å®æ°ã¯åç¹ä»¥å¤ã®1ç¹ãä»£å ¥ããã°æ±ºã¾ã</span>ã®ã§ã<br />
\((\,x\,,\,y\,)=(\,2\,,\,-8\,)\)ããã\(y=ax^2\)ãã«ä»£å ¥ãã¦ã</p>
<p>ã\(-8=a(2)^2=4a\)ãããããã\(\underline{a=-2}\)ã</p>
<p>颿°ã§ã¯æãè¾¼ã¿ã¯ç¦ç©ã§ãã®ã§ãã§ããã ãã°ã©ãã¯æ¸ãã¦èããããã«ãã¾ãããã</p>
<p>ã\(y=ax^2\)ãã®é¢æ°ã§ãæ¯ä¾ã忝ä¾ã¨åãã§\(\color{red}{宿° a}\) ã<span class="green b">æ¯ä¾å®æ°</span>ã¨ããã®ã¯ç¢ºèªãã¦ããã¦ãã ããã</p>
<h5>ç§»é ã¨ã¯ä½ãè¦ãã¦ãã¾ãã</h5>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(9)ãæ¹ç¨å¼ \(3(2x-1)=-9\) ãï¼æ¬¡ã®ããã«è§£ãã¾ããããçå¼ã®ä¸¡è¾ºã«åãæ°ãããã¦ãï¼çå¼ã¯æãç«ã¤ããã¨ããçå¼ã®æ§è³ªã使ã£ã¦ï¼æ¹ç¨å¼ãå¤å½¢ãã¦ããã®ã¯ã©ãã§ãããã¢ï½ã¨ã®ä¸ãã1ã¤é¸ã³ï¼ãã®è¨å·ãæ¸ããªããã<br />
<img src="https://arakannotie.com/wp-content/uploads/2018/10/saitamaikou1.jpg" alt="" width="347" height="204" class="aligncenter size-full wp-image-12574" />ã</div></div></p>
<p>ãã®åé¡ã®ããçå¼ã®ä¸¡è¾ºã«åãæ°ãããã¦ãï¼çå¼ã¯æãç«ã¤ããã¨ããçå¼ã®æ§è³ªã使ã£ã¦ï¼æ¹ç¨å¼ãå¤å½¢ãã¯ãã<span class="red b">ç§»é </span>ãã®ãã¨ã§ãã<br />
ç§»é ã«ã¤ãã¦ã¯ãã§ã«ï¼6ï¼ã§èª¬æãã¦ããã®ã§å¿ è¦ããã¾ããããå度説æãã¦ããã¾ãã</p>
<p>ãæ¹ç¨å¼ \(3(2x-1)=-9\)ããè§£ãã¨ãã«ãå±éã㦠\(x\) ã®é ã ããå·¦è¾ºã«æ®ãããã«å¤å½¢ãã¾ãã</p>
<p>ã\(\begin{eqnarray}<br />
3(2x-1)&#038;=&#038;-9\\<br />
6x-3&#038;=&#038;-9<br />
\end{eqnarray}\)</p>
<p>ããã§ï¼3ãå³è¾ºã«ç§»é ãããã®ã§ããã符å·ãå¤ãã¦å³è¾ºã«ç§»é ããã®ãæ®éã«ãªã£ã¦ããã¨æãã¾ãããããã¯<span class="red b">両辺ã«ï¼3ãããã¦ãã</span>ã®ã¨åããã¨ã§ãã</p>
<p>ãã\(\begin{eqnarray}<br />
3(2x-1)&#038;=&#038;-9\\<br />
6x-3&#038;=&#038;-9\\<br />
6x-3\color{red}{+3}&#038;=&#038;-9\color{red}{+3}\\<br />
6x&#038;=&#038;-9+3\\<br />
6x&#038;=&#038;-6\\<br />
x&#038;=&#038;-1<br />
\end{eqnarray}\)</p>
<p>ãã®3è¡ç®ãçç¥ãã¦ãåé¡ã¯ããã¾ããã<br />
ãã ãããã§èãã¦ããã®ã¯ããç§»é ããã¨ç¬¦å·ãå¤ããæå³ãæãåºãã¦ãã ããããã¨ãããã¨ã§ãã</p>
<p>çãã¯ã\(\underline{ã¤}\)</p>
<p><span class="red b">ç§»é ã¯ä¸¡è¾ºã«çããæ°ãå ãã¦ãã</span>ãã¨ã«ãªãã¾ãã</p>
<p>䏿¹ã§ä¿æ°ã1ã«å¤ããã¨ãã忝ãç¡ããã¨ããªã©ã¯ä¸¡è¾ºã«åãæ°ãããã¦ãã¾ãã</p>
<p>ã\(\begin{eqnarray}<br />
6x&#038;=&#038;-6\\<br />
x&#038;=&#038;-1<br />
\end{eqnarray}\)</p>
<p>ããã¯</p>
<p>ã\(\begin{eqnarray}<br />
6x&#038;=&#038;-6\\<br />
6x\times \color{red}{\frac{1}{6}}&#038;=&#038;-6\times \color{red}{\frac{1}{6}}\\<br />
x&#038;=&#038;-1<br />
\end{eqnarray}\)</p>
<p>ããããåºæ¬çãªæä½ã®æå³ãåãå顿§æã¯ãªããªãé¢ç½ãã§ããã<br />
çãã¯åºãããã§ãæ©æ¢°çãã¨ãã人ãå¤ãã§ãããã</p>
<h5>度æ°åå¸è¡¨ããå¹³åå¤ãåºãæ¹æ³</h5>
<p>ã<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(10)ã<img src="https://arakannotie.com/wp-content/uploads/2018/10/0001saitamasiryou1.jpg" alt="" width="222" height="208" class="alignright size-full wp-image-12577" />å³ã®è¡¨ã¯ï¼ããã¯ã©ã¹ã®ãã³ããã¼ã«æãã®è¨é²ãï¼åº¦æ°åå¸è¡¨ã«è¡¨ãããã®ã§ãããã®ã¯ã©ã¹ã®ãã³ããã¼ã«æãã®è¨é²ã®å¹³åå¤ãï¼åº¦æ°åå¸è¡¨ããæ±ããªããã</div></div></p>
<p>æ±ãããã®ã¯å¹³åå¤ã§ãã<br />
å¹³åå¤ã¯ç·å¾ç¹ãç·äººæ°ã§å²ã£ããã®ã«ãªãã¾ãã</p>
<p>ã\(\displaystyle \color{red}{å¹³åå¤ï¼\frac{ç·å¾ç¹}{度æ°åè¨}}\)</p>
<p>ãã ãç·å¾ç¹ã度æ°åå¸è¡¨ã§ã¯ã¯ã£ãããã¾ããã<br />
ä¾ãã°ãéç´\(\,10\,\mathrm{m}以ä¸\,20\,\mathrm{m}æªæº\)ã«ã¯6人ãã¾ããããã®6人ã®è·é¢ã¯ããããä½mãªã®ãããã£ã¦ãã¾ããã</p>
<p>ããã§ã度æ°åå¸è¡¨ã§è¡¨ãããå ´åã¯ã<br />
<span class="red b">ãã®éç´ã®äººå ¨å¡ãéç´ã®çãä¸ã®å¤</span>ã¨è¦ãªãã¾ãã</p>
<p>ãã®éç´ã®çãä¸ã®å¤ãã<span class="red b">éç´å¤</span>ãã¨ããã¾ãã<br />
éç´\(\,10\,\mathrm{m}以ä¸\,20\,\mathrm{m}æªæº\)ã®éç´å¤ã¯ \(15\,\mathrm{m}\)ã§ãã<br />
éç´\(\,20\,\mathrm{m}以ä¸\,30\,\mathrm{m}æªæº\)ã®éç´å¤ã¯ \(25\,\mathrm{m}\)ã§ãã</p>
<p>éç´å¤ã®æ±ãæ¹ã¯éç´ã®å·¦ç«¯ï¼å°ããå¤ï¼ã¨å³ç«¯ï¼å¤§ããå¤ï¼ãããã¦2ã§å²ãã°åºã¦ãã¾ãã</p>
<p>ã\(\displaystyle éç´å¤ï¼\frac{éç´ã®å·¦ç«¯ï¼å³ç«¯}{2}\)</p>
<p>éç´å¤ã«åº¦æ°ãããã¦ããã¹ã¦ããã¨ç·å¾ç¹ã¨ãªãã¾ãã</p>
<p>ãéç´å¤ã 5mãã®äººã¯ã\(\color{red}{2}\)人<br />
ãéç´å¤ã15mãã®äººã¯ã\(\color{red}{6}\)人<br />
ãéç´å¤ã25mãã®äººã¯ã\(\color{red}{7}\)人<br />
ãéç´å¤ã35mãã®äººã¯ã\(\color{red}{4}\)人<br />
ãéç´å¤ã45mãã®äººã¯ã\(\color{red}{1}\)人</p>
<p>å¹³åå¤ã¯ã\(\displaystyle \frac{ã(éç´å¤×度æ°)ã®åã}{度æ°åè¨}\)<br />
ãªã®ã§å¹³åå¤ã¯<br />
ã<br />
ã\(\displaystyle \frac{5\times 2+15\times 6+25\times 7+35\times 4+45\times 1}{20}\\<br />
\displaystyle =\frac{10+90+175+140+45}{20}\\<br />
\displaystyle =\frac{460}{20}\\<br />
=23\)</p>
<!-- WP QUADS Content Ad Plugin v. 2.0.92 -->
<div class="quads-location quads-ad1" id="quads-ad1" style="float:none;margin:0px 0 0px 0;text-align:center;">

</div>

<p>説æãé·ãã£ãã§ããã<span class="red b">度æ°åå¸è¡¨ã§ã¯éç´å¤ãæ¡ç¨</span>ããã¨ããã£ã¦ããã°ã<br />
ãã®åé¡ã¯æå¾ã®è¨ç®ã ãã§çããåºã¾ãã</p>
<p>ããã¯åé¡ç¨ç´ã®ããã¦ããé¨åã§è¨ç®ã§ããç¨åº¦ã®éã§ãã</p>
<h3>é£å¡©æ°´ãæ··åããã¨ãã®ãã¤ã³ã</h3>
<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
(11)ãæ¿åº¦ãï¼6ï¼ ã®é£å¡©æ°´ã¨10ï¼ ã®é£å¡©æ°´ãããã¾ãããã®2種é¡ã®é£å¡©æ°´ãæ··ãåããã¦ï¼7ï¼ ã®é£å¡©æ°´ã600gã¤ããã¾ããæ¬¡ã®â ï¼â¡ã«çããªããã<br />
ï¼ãã¼ã«ã¼ã§æ··ãã¦ããçµµãããã¾ããåé¡ã«é¢ä¿ãªãã®ã§çç¥ãã¾ããï¼<br />
â 7ï¼ ã®é£å¡©æ°´600gã«å«ã¾ããé£å¡©ã®è³ªéãæ±ããªããã<br />
â¡6ï¼ ã®é£å¡©æ°´ã \(x\) gï¼10ï¼ ã®é£å¡©æ°´ã \(y\) gã¨ãã¦ï¼é£ç«æ¹ç¨å¼ãã¤ããï¼6ï¼ ã®é£å¡©æ°´ã¨10ï¼ ã®é£å¡©æ°´ã®è³ªéãããããæ±ããªããã<br />
ãªããèããã¨ãã«ãä¸ã®è¡¨ãå©ç¨ãã¦ãããã¤ããããã¾ããã</p>
<table>
<tbody>
<tr>
<td></td>
<td style="text-align: center;">6ï¼ ã®é£å¡©æ°´</td>
<td style="text-align: center;">10ï¼ ã®é£å¡©æ°´</td>
<td style="text-align: center;">7ï¼ ã®é£å¡©æ°´</td>
</tr>
<tr>
<td>é£å¡©æ°´ã®è³ªé(g)</td>
<td style="text-align: center;">\(x\)</td>
<td style="text-align: center;">\(y\)</td>
<td></td>
</tr>
<tr>
<td>é£å¡©ã®å²å</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>é£å¡©ã®è³ªé(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<p></div></div>
<p>é£å¡©æ°´ã®åé¡ã§ã¯ãã¤ã³ããããã¤ãããã¾ãã</p>
<p>ï¼ã¤ã¯æº¶æ¶²ã¨ã¯ã溶åªï¼æº¶è³ªãã§ãããã¨ã<br />
ã¤ã¾ãã<br />
ã\(\color{magenta}{\fbox{é£å¡©æ°´ï¼æ°´ï¼é£å¡©}}\)<br />
ã§ãããã¨ã§ãã</p>
<p>ããä¸ã¤ã¯æ¿åº¦ã<br />
ã\(\displaystyle \color{red}{æ¿åº¦(ï¼ )ï¼\frac{é£å¡©}{é£å¡©æ°´}ã\times 100(ï¼ )}\)</p>
<p>ãã®é£å¡©æ°´ã¯æ°´ã¨é£å¡©ãæ··ãã£ããã®ã§ããã<br />
é£å¡©æ°´ã®åé¡ãè§£ãã¨ãã®åºæ¬ã¨ãã¦ã¯ã<span class="red b">æ°´ã«é¢ãã¦æ¹ç¨å¼ãç«ã¦ãã¨ãããã¨ã¯ãã¾ãã</span>ã</p>
<p>å ããæ°´ã®éãæåã§ãããã¨ã¯ããã¾ããæ¹ç¨å¼èªä½ã¯ã<br />
ã\(\color{red}{\fbox{溶液ã®é}}\)<br />
ã\(\color{magenta}{\fbox{é£å¡©ã®é}}\)<br />
ãã®ï¼ã¤ã«ã¤ãã¦æ¹ç¨å¼ãç«ã¦ã¦ããã¨ã»ã¨ãã©ããã¾ãããã¾ãã</p>
<p>ãã®ï¼ã¤ã追ããªããæ¹ç¨å¼ãç«ã¦ã¦è¦ã¾ãããã</p>
<p>溶液ã«ã¤ãã¦æãç«ã¤é¢ä¿å¼ã¯ã<br />
ããã6ï¼ ã®é£å¡©æ°´ã¨10ï¼ ã®é£å¡©æ°´ãããã¾ãã<br />
ããã®2種é¡ã®é£å¡©æ°´ãæ··ãåããã¦ï¼7ï¼ ã®é£å¡©æ°´ã600gããã<br />
ã¨ããå顿ããã<br />
ã6ï¼ ã®é£å¡©æ°´ã®éã \(x \,\mathrm{g}\)<br />
ã10ï¼ ã®é£å¡©æ°´ã®éã \(y \,\mathrm{g}\)<br />
ã¨ããã¨ãæ··ãåãããå¾ã¯600gã«ãªãã®ã§ã<br />
ã\(x+y=600ã・・・(ã¢)\)</p>
<p>é£å¡©ã®éã¯ï¼ ã§è¡¨ããã¦ããã®ã§ã<br />
ã6ï¼ ã®é£å¡©æ°´ã\(100\,\mathrm{g}ä¸ã«\,6\,\mathrm{g}\)<br />
ã10ï¼ ã®é£å¡©æ°´ã\(100\,\mathrm{g}ä¸ã«\,10\,\mathrm{g}\)<br />
ã®é£å¡©ãå«ã¾ãã¦ãããã¨ã«ãªãã¾ãã</p>
<p>åãæ¿åº¦ã®é£å¡©æ°´ã§ã¯ãé£å¡©æ°´ãå¤ããªãã°ãã®ä¸ã«å«ã¾ããé£å¡©ã®éãå¢ãã¾ãã<br />
ã¤ã¾ããé£å¡©æ°´ã®éã¨ãã®ä¸ã«å«ã¾ããé£å¡©ã®éã¯æ¯ä¾ããã®ã§ã<br />
6ï¼ ã®é£å¡©æ°´ \(x \,\mathrm{g}\)ä¸ã ã¨ä½gãããã¯æ¯ä¾å¼ã§æ±ã¾ãã¾ãã<br />
ã\(x \,\mathrm{g}\) ä¸ã« \(a\,\mathrm{g}\) ããã¨ããã¨ã</p>
<p>ã\(100\,\mathrm{g}\)ã®é£å¡©æ°´ä¸ã«\(6\,\mathrm{g}\)ã®é£å¡©ãªãã<br />
ã\(x \,\mathrm{g}\) ã®é£å¡©æ°´ä¸ã« \(a\,\mathrm{g}\)ã®é£å¡©ã<br />
ã¨ããæ¯ä¾ãªã®ã§</p>
<p>ã\(\begin{eqnarray}<br />
100ï¼6&#038;=&#038;x:a\\<br />
100a&#038;=&#038;6x\\<br />
\displaystyle a&#038;=&#038;\frac{6x}{100}<br />
\end{eqnarray}\)</p>
<p>ããã \(6\) ï¼ ã®é£å¡©æ°´ \(x \,\mathrm{g}\) ä¸ã®é£å¡©ã®éã§ãã</p>
<p>åãããã« \(10\) ï¼ ã®é£å¡©æ°´ \(y \,\mathrm{g}\) ä¸ã®é£å¡©ã®éã¯<br />
ã\(\displaystyle \frac{10y}{100}\)<br />
ã¨ãªãã¾ãã</p>
<p>é£å¡©æ°´ãæ··ãåãããå¾ã®é£å¡©ã®éã¯ãã®2ã¤ã®åã«ãªãã¾ãã<br />
ãã¨ãæ°´ãè¸çºãããã¨ãã¦ãé£å¡©ã®éã¯å¤ããã¾ããã<br />
ãããããã§ã¯æ··ããã ããªã®ã§åãªããåãã§ãã</p>
<p>ãã¦ãåç½®ããé·ããªãã¾ãããåé¡ãè§£ãã¦ã¿ã¾ãããã</p>
<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
â 7ï¼ ã®é£å¡©æ°´600gã«å«ã¾ããé£å¡©ã®è³ªéãæ±ããªããã<br />
</div></div>
<p>\(7\) ï¼ ã®é£å¡©æ°´ã¯ \(100\, \mathrm{g}\) ã®é£å¡©æ°´ï¼æº¶æ¶²ä¸ï¼ã« \(7\,\mathrm{g}\) ã®é£å¡©ï¼æº¶è³ªï¼ãå«ãã§ãã¾ãã<br />
ã ãã \(600\,\mathrm{g}\) ä¸ã« \(m\,\mathrm{g}\) å«ã¾ãã¦ããã¨ããã¨ã</p>
<p>ã\(\begin{eqnarray}<br />
100:7&#038;=&#038;600:m\\<br />
100\,m&#038;=&#038;7\times 600\\<br />
100\,m&#038;=&#038;4200\\<br />
m&#038;=&#038;\underline{42}<br />
\end{eqnarray}\)</p>
<p>æ¯ä¾å¼ã§è§£ãã¦ã¿ãã°ããã«åºã¾ãã</p>
<p>ããããæ¯ä¾é¢ä¿ã®ä½ãæ¹ãç¥ã£ã¦ããç§ã®çå¾ã¯ã<br />
ã\(\displaystyle 7\times \frac{600}{100}=\underline{42}\)<br />
ã¨ç¬éã§çããåºãã¦ãã¾ãã¾ãã妿 ¡ã§æãã£ãæ¹æ³ã§ãã¾ãã¾ããã<br />
ãã¡ããã<span class="red b">åºæ¬çã«ã¯æ¯ä¾é¢ä¿ãªã®ã§æ¯ä¾å¼</span>ã§ãã</p>
<div class="su-note" style="border-color:#dbd4dd;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><div class="su-note-inner su-u-clearfix su-u-trim" style="background-color:#f5eef7;border-color:#ffffff;color:#000000;border-radius:3px;-moz-border-radius:3px;-webkit-border-radius:3px;"><br />
â¡6ï¼ ã®é£å¡©æ°´ã \(x\) gï¼10ï¼ ã®é£å¡©æ°´ã \(y\) gã¨ãã¦ï¼é£ç«æ¹ç¨å¼ãã¤ããï¼6ï¼ ã®é£å¡©æ°´ã¨10ï¼ ã®é£å¡©æ°´ã®è³ªéãããããæ±ããªããã<br />
ãªããèããã¨ãã«ãä¸ã®è¡¨ãå©ç¨ãã¦ãããã¤ããããã¾ããã<br />
</div></div>
<p>â¡ã®ãã®é¨ååç¬ã§ã¯è§£ããã¨ã¯ã§ãã¾ããã<br />
åé¡æå ¨ä½ããé£ç«æ¹ç¨å¼ãç«ã¦ã¾ãã</p>
<p>â ã¯ãªãã¦ããããããªãåé¡ã§ãããâ ã¯ãã³ãã¨ãã¦åºé¡ãã¦ããã¦ãã¾ãã<br />
ããããå顿§æãèªå°ã¨ããã¾ãã</p>
<p>åé¡æå ¨ä½ãè¦ãã¨</p>
<p>ã\(\color{black}{\fbox{æ¿åº¦ãï¼6ï¼ ã®é£å¡©æ°´ã¨10ï¼ ã®é£å¡©æ°´ãããã¾ãã}}\)<br />
ã\(\color{black}{\fbox{æ··ãåããã¦ï¼7ï¼ ã®é£å¡©æ°´ã600gã¤ããã¾ãã}}\)</p>
<p>ãã®æ¡ä»¶ãã \(x\) 㨠\(y\) ã®2ã¤ãæ±ãã¾ãã<br />
<span class="red b">æå2ã¤ãªã®ã§æ¹ç¨å¼ã2ã¤ããã°è¯ã</span>ã®ã§ããã</p>
<p>ã\(\color{magenta}{\fbox{é£å¡©æ°´ã®é}}\)<br />
ã\(\color{red}{\fbox{é£å¡©ã®é}}\)</p>
<p>ã«ã¤ãã¦ã®æ¹ç¨å¼ãç«ã¦ã¾ãã</p>
<p>é£å¡©æ°´ã®éã«ã¤ãã¦ã¯ã<br />
ã<span class="red b">2ã¤ã®é£å¡©æ°´ãããã¦600g</span><br />
ããã¯åé¡ã«å ¥ãåã«åºãã¦ããå¼ã§ãã</p>
<p>ã\(x+y=600ã・・・(ã¢)\)</p>
<p>é£å¡©ã®éã«ã¤ãã¦ã¯ã<br />
ã<span class="red b">6ï¼ ã®é£å¡©æ°´ \(x\) gä¸ã®é£å¡©ã¨ã<br />
ã10ï¼ ã®é£å¡©æ°´ \(y\) gä¸ã®é£å¡©ã¨ãããã¨ã<br />
ã7ï¼ ã®é£å¡©æ°´ \(600\) gä¸ã®é£å¡©</span><br />
ã«ãªã£ã¦ããã¯ãã§ãã<br />
é£å¡©ã¯æ··ãã¦ãæ¶ããªãã®ã§ãå ã®éã®åã«ãªã£ã¦ããªãã¨ããããã§ãã</p>
<p>ã6ï¼ ã®é£å¡©æ°´ \(x\) gä¸ã®é£å¡©ã®é \(a\) ã¯ã<br />
æ¯ä¾å¼<br />
ã\(100:6=x:a\)ããã \(\displaystyle a=\frac{6x}{100}ã\)</p>
<p>ã10ï¼ ã®é£å¡©æ°´ \(y\) gä¸ã®é£å¡©ã®é \(b\) ã¯ã<br />
æ¯ä¾å¼<br />
ã\(100:10=y:b\)ããã \(\displaystyle b=\frac{10y}{100}ã\)</p>
<p>7ï¼ ã®é£å¡©æ°´ \(600\) gä¸ã®é£å¡©ã®éã¯â ã§ \(42\,\mathrm{g}\) ã¨æ±ãã¦ããã®ã§ä½¿ãã¾ãããã</p>
<p>ããã¨ã\(a+b=42\) ã«ãªãã¾ãã<br />
ããã \(x\,,\,y\) ã®æ¹ç¨å¼ã«ããã¨ã<br />
ã\(\displaystyle \frac{6x}{100}+\frac{10x}{100}=42ã・・・(ã¤)\)</p>
<p>ï¼è§£çã«ã¯ \(a\,,\,b\) ã®å¼ã¯å¿ è¦ããã¾ãããï¼</p>
<p>ãã£ãã表ãä¸ãã¦ããã¦ããã®ã§ä½¿ã£ã¦ã¿ã¾ãããã<br />
ã</p>
<table>
<tbody>
<tr>
<td></td>
<td style="text-align: center;">6ï¼ ã®é£å¡©æ°´</td>
<td style="text-align: center;">10ï¼ ã®é£å¡©æ°´</td>
<td style="text-align: center;">7ï¼ ã®é£å¡©æ°´</td>
</tr>
<tr>
<td>é£å¡©æ°´ã®è³ªé(g)</td>
<td style="text-align: center;">\(x\)</td>
<td style="text-align: center;">\(y\)</td>
<td style="text-align: center;">\(600\)</td>
</tr>
<tr>
<td>é£å¡©ã®å²å</td>
<td style="text-align: center;">\(\displaystyle \frac{6}{100}\)</td>
<td style="text-align: center;">\(\displaystyle \frac{10}{100}\)</td>
<td style="text-align: center;">\(\displaystyle \frac{7}{100}\)</td>
</tr>
<tr>
<td>é£å¡©ã®è³ªé(g)</td>
<td style="text-align: center;">\(\displaystyle \frac{6}{100}\times x\)</td>
<td style="text-align: center;">\(\displaystyle \frac{10}{100}\times y\)</td>
<td style="text-align: center;">\(\displaystyle \frac{7}{100}\times 600\)</td>
</tr>
</tbody>
</table>
<p>å²åã¯å°æ°ã§ãè¯ãã§ãããåæ°ã®æ¹ãè¨ç®å¦çããã¨ãã«æ©ãå ´åãå¤ãã§ãã</p>
<p>表ããªãã¦ãé£ç«æ¹ç¨å¼ã¯ç«ã¦ããã¾ããã<br />
ã<span class="red b">表ã®é£å¡©æ°´ã®è³ªéã¨ãé£å¡©ã®å²åãããããã¨é£å¡©ã®éã«ãªã£ã¦ãã</span><br />
ã¨ãããã¨ã«ã¯æ°ãã¤ãã¦ä¸ããã<br />
é£ç«æ¹ç¨å¼ã¯</p>
<p>ã\( \begin{cases}<br />
\hspace{7pt} x+y=600\hspace{30pt}・・・(ã¢)\\ \\<br />
\hspace{7pt} \displaystyle \frac{6x}{100}+\frac{10y}{100}=42\hspace{10pt}・・・(ã¤)<br />
\end{cases}\)</p>
<p>ã¨ãªãã¾ãã<br />
ä¸ã®æ¹ç¨å¼ã¯â ããªããã°<br />
ã\(\displaystyle \frac{6x}{100}+\frac{10y}{100}=\frac{7}{100}\times 600\)<br />
ã¨ããã¨ããã§ããâ ã§å³è¾ºã¯æ±ãã¦ããã®ã§å©ç¨ããå½¢ã§è¡¨ãã¾ããã</p>
<p>ç´åã¯ãã¦ãããªãã¦ãæ¸ç¹ã¯ãªãã¨ãããã§ãããã<br />
éã«ç´åãã¦ããã¨å¼ã®æå³ããããã«ããã§ããããã</p>
<p>ãã®é£ç«æ¹ç¨å¼ãè§£ãã¾ãã<br />
ä¸ã®æ¹ç¨å¼ï¼ã¤ï¼ã¯ä¸¡è¾º100åãã¦ãä¿æ°ãç°¡åãªå°ããæ´æ°ã«å¤å½¢ããã¨<br />
ã<br />
ã\(\begin{eqnarray}<br />
\displaystyle \frac{6x}{100}+\frac{10y}{100}&#038;=&#038;42\\<br />
6\,x\,+\,10\,y&#038;=&#038;4200\\<br />
3\,x\,+\,5\,y&#038;=&#038;2100ã・・・(ã¤)&#8217;<br />
\end{eqnarray}\)</p>
<p>ããã¨ï¼ã¢ï¼ããå æ¸æ³ã§è§£ãã¾ãã<br />
\(ï¼ã¢ï¼\times 3\) ãã<br />
ã\(3\,x\,+\,3\,y=1800ã・・・(ã¢)&#8217;\)</p>
<p>ã\(3\,x\,+\,5\,y=2100ã・・・(ã¤)&#8217;\)<br />
ã¨<br />
ã\(3\,x\,+\,3\,y=1800ã・・・(ã¢)&#8217;\)<br />
ããã\(x\)ããæ¶å»ãã¦ã<br />
ã\(2\,y=300\)ããã£ã¦ã\(y=150\)</p>
<p>ãã®ã¨ãã\(x+y=600\)ãããã\(x=450\)</p>
<p>çãã¯é£ç«æ¹ç¨å¼ã¨é£å¡©æ°´ã®éãããããçãããã¨ã«ãªã£ã¦ãã¾ãã</p>
<p>(çãï¼<br />
é£ç«æ¹ç¨å¼<br />
ãã<span class="red b">\( \begin{cases}<br />
\hspace{7pt} x+y=600\hspace{30pt}\\ \\<br />
\hspace{7pt} \displaystyle \frac{6x}{100}+\frac{10y}{100}=42\hspace{10pt}<br />
\end{cases}\)</span></p>
<p>6ï¼ ã®é£å¡©æ°´ã<span class="red b">\(450\,\mathrm{g}\)</span><br />
10ï¼ ã®é£å¡©æ°´ã<span class="red b">\(150\,\mathrm{g}\)</span></p>
<h3>第1åã®èª¬æãé·ãã£ãçç±ã¨å¹³åç¹ãç°¡åã«è¶ ããç§è¨£</h3>
<p>å¹³åç¹ã¯åé¨è ã®ã¬ãã«ã«ãã£ã¦å¤ããã¾ãã<br />
ä¾ãã°ãããã§ä»ãããã説æãè¦ã人ãå¤ããã°å¹³åç¹ã¯ä¸ããã¾ããç¬</p>
<p>ã ãããå¿ ãå¹³åç¹ãè¶ ããããã¨ã¯è¨ãåãã¾ããã<br />
ãããã第1åã®åé¡ãã¿ã¦ãããã§ãããï¼<br />
æéããã¾ããªãã®ã§è©³ããã¯èª¬æãã¾ããã§ããããããããã¯çè§£ã§ãã¾ããã§ãããï¼<br />
ç·´ç¿ããã°è§£ããããã«ãªãã¨æãã¾ããã§ãããï¼</p>
<p>åé¡ã®ã¬ãã«ã§ããã¨ã<span class="red b">æç§æ¸ã®ä¾é¡ãç·´ç¿åé¡ç¨åº¦ã®åé¡</span>ã§ãã<br />
ç« æ«åé¡ã»ã©ã®ã¬ãã«ãããã¾ããã</p>
<p>ã§ãã§ããã<span class="red b">ããã¾ã§ã®é ç¹ã¯ãªãã¨50ç¹ï¼</span>ããã¾ãã<br />
説æãå ¥ããçããåºãã ããªã5åãããã¾ããã<br />
ç§ã¯å¹´ã é ã®å転ãé ããªã£ã¦ããã®ã§ãä¸å¦çã®è¨ç®ã¹ãã¼ããªããã£ã¨æ©ãããããã¾ããã</p>
<p>ãã®å¾ãåãã¬ãã«ã®åé¡ã¯ããã¤ãããã¾ãã<br />
å°åéåã«å ¥ãããã¦ããªãã ãã§ãã</p>
<p>ããã§ãå¹³åç¹ãä½ãã®ã¯ã<span class="red b">åé¨çã®åéã</span>ã§ãã</p>
<p><span class="orange b">åé¨ã ããé£ããåé¡ãåºãã</span><br />
<span class="orange b">é£ããåé¡ãè§£ããªãã¨ãããªãã</span><br />
<span class="orange b">塾ã«è¡ã£ã¦ããããã®å¿ç¨åé¡ãè§£ããªãã¨ãããªãã</span></p>
<p><span class="red b">å ¨é¨åéãã§ã</span>ã</p>
<p>塾ã«è¡ããã¨ãééãã ã¨ã¯ããã¾ããã<br />
ã§ãããããã¨ã¯ééã£ã¦ãã¾ãã</p>
<p>å¼ççã¯å ¨å½çã«è¦ã¦ãé常ã«å³ããåé¨å°åã§ãã<br />
確ãã«ä¸ä½æ ¡ã¯æºç¹åããããããããªãã¨å³ããå¦åºã§ãã</p>
<p>ããããå¹³åç¹ãããããããããã°50ç¹ã60ç¹ã¨ããªãã¨æã£ã¦ãããããæ°å¦ã§è¦ããã§ãããªãããããã¨ãééãã¦ãã¾ãã<br />
å ¥è©¦ã¯ã<span class="red b">ç¹ã«å ¬ç«é«æ ¡å ¥è©¦ã¯</span>å ¨åéãç¿å¾ã§ãã¦ãããã©ããã確èªãã¦ãã¾ãã</p>
<p>å¿ç¨åé¡ã°ããã§ã¯ããã¾ããããå ¨é¨ãåºæ¬åé¡ã ãã¨ãããã¾ããããåºãåéãåºæ¬ããèãã¦ããåé¡ã§ãããã¨ã¯å ¨å½åãã§ãã<br />
å¼ççã®å ´åã確ã妿 ¡å¥ã«è£éï¼å¦æ ¡é¸æï¼åé¡ããã£ãã¨æãã®ã§ããããããã妿 ¡ãé¤ãã¦ã¯åºæ¬ä¸å¿ã§ãããã¨ã¯ééãããã¾ããã</p>
<p>ã⇒ã<a href="https://fromhimuka.com/math/54.html" rel="noopener" target="_blank">å¼ççå ¬ç«é«æ ¡å ¥è©¦2018妿 ¡é¸æåé¡ã®æ°å¦ã®åé¡ã¨è§£èª¬</a></p>
<p>â»ï¼ä¾é ¼äººã§ããï¼<br />
<span class="green b">è£éåé¡ï¼å¦æ ¡é¸æåé¡ï¼ã¯ãæç°å çããã¡ãã§è©³ãã解説ãã¦ããã¦ãã¾ãã®ã§åèã«ãã¦ãã ãããã</span></p>
<p>ç°¡åã«å¯¾çæ¹æ³ããä¼ãããã¨ã<br />
æç§æ¸ã®åºæ¬åé¡ãåéãåºããä½åº¦ãç¹°ãè¿ããå¿ãã¦ãããã¨ããªããã®ç¢ºèªããã¾ãããã</p>
<p><span class="red b">第1åã®åºæ¬åé¡ã ãã§50ç¹</span>ã§ãã<br />
å¾ã«ç¶ãåé¡ã®åãã¬ãã«ã®åé¡ãåãããã¨70ç¹å以ä¸ãåããããåºæ¬åé¡ã§ãã</p>
<p>ãã ããçãè¦ã¦ãã¦ã¯ããã¾ããã<br />
åé¡ãé£ããã®ã§ã¯ããã¾ããã<br />
ãã¹ã§ããè¨ç®ãã¹ãåé¡ã®èªã¿ééãã</p>
<p>è¨ç®ãã¹ã¯èª°ã§ãããã¾ãã<br />
äºåæ ¡ã®æ¨¡è©¦ã§ç·åã§å ¨å½1ä½ï¼ãã¡ããæ°å¦ã1ä½ï¼ã«ãªã£ããã¨ã®ãã髿 ¡çã§ãè¨ç®ãã¹ã¯ãã¦ã¾ããã</p>
<p>ã ãã大åãªã®ãè¦ç´ãã§ãã<br />
5åã§è§£ãã¦ã10åããã¦è¦ç´ããããã</p>
<p>ããããã<span class="red b">è§£ããåºæ¬åé¡ã確å®ã«</span>è§£ãã°å ¨ä½ã§50ç¹ãããã¯ç°¡åã«ã¨ãã¾ããã</p>
<p>ã¨ãããã¨ã§ãæã¿ã®å¹³åç¹è¶ãã®ç§è¨£ã¯ãä¼ããã¾ããã<br />
ããã¾ã§ã§è¯ãã§ããï¼</p>
<p>ã¨ãä¼ããããã<br />
ãã§ããã°å ¨åãé¡ããã¾ããã<br />
ã¨ãã<span class="red b">鬼ã®ãããªè¿äºãè¿ã£ã¦ãã¾ãã</span>ã</p>
<p>ã§ããå¾ã®åé¡ãåããããªæãã ããããã§æ¸ãã¦ãããããªãã¨ã¯ç§ã説æããªãã¦ãçãã妿 ¡ã塾ã§ç¿ãã®ã§ã¯ãªãã§ããããã</p>
<p>ä¸åº¦ããã¾ã§ã§æ¢ãã¦ãã叿ãããã°è¿½å ããã¨ããã®ã¯ã©ãã§ãããï¼<br />
誰ãèªãã§ããªãã ãããããåéã®ãåæ§ã¯ãã£ã¨å¤§ä¸å¤«ã§ããã</p>
<p>â»ï¼ä¾é ¼äººã§ãï¼<br />
ã»ã»ã»ã»ã»</p>
<p>ããã£ï¼<br />
ãç§ã®èª¬æã¯çµãããã¨ãã話ã¯ç¡è¦ãããããã§ãã®ã§å¾ã®åé¡ã説æãç°¡åã«ã§ãããã¦ããã¾ãã</p>
<p>ã©ãããæç¨¿ãããã®ããããã¾ããããã¨ããããã¯å ¨å解説ããã¦ããã¾ãã</p>
<p>å奿å°ã§ç®ã®åã§èª¬æããã°30åã§çµããã®ã«ãããã</p>
<p>â»ï¼ä¾é ¼äººã§ãï¼<br />
ããã¾ã§åºæ¥ãã50ç¹åããã¨èãã¦ãã¾ã£ãããäººéæ¬²ãåºã¾ãããã<br />
é ã®åºããã°ã¡ããã®ç§ã§ããããããããªãã»ã©ããããªãã ï¼ãã¨è§£ãã¾ããè§£ãã¾ãã</p>
<p>ã ãã70ï½80ç¹ã夢ã§ã¯ãªãã®ãªãããå¿ããã®ã¯æ¿ç¥ã®ä¸ã§ç¡çãè¨ã£ã¦2åç®ä»¥éã解説ãã¦ããã ãããã¨ã«ãªãã¾ããã<br />
2åç®ã1åç®ã®ï¼å°åéåï¼ã¨åãã¬ãã«ãããã§ãã</p>
<p>ç®ã®åãæãããªã£ã¦ããæ°ããã¾ãããï¼<br />
ããããããããã§çµããã§ãã<br />
ãããããã«ãã£ã¬ã³ã¸ãã¾ããããé å¼µãã¾ãããï¼</p>
<p>ã⇒ã<a href="https://arakannotie.com/12674.html">å¼ççç«é«æ ¡å ¥è©¦(2018éå»å) 確çã¨å³å½¢åé¡ã®è§£èª¬ã¨ãã¤ã³ã</a></p>
<p>å¼ççå ¬ç«é«æ ¡å ¥è©¦(å¹³æ30年度)ã®ç¬¬2åç®ã®ç¢ºçã¨å³å½¢åé¡ã®ãªãªã¸ãã«è§£èª¬ã¨ãã¤ã³ãã«ãªãã¾ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/12697.html">å¼ççå ¬ç«é«æ ¡å ¥è©¦ã®éå»åããè¦åæ§ã®åé¡ãæ»ç¥ããæ¹æ³</a></p>
<p>å¼ççå ¬ç«é«æ ¡å ¥è©¦(å¹³æ30年度)ã®ç¬¬3åç®ã®ãªãªã¸ãã«è§£èª¬ã¨å¯¾çã«ãªãã¾ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/12709.html">å¼ççå ¬ç«å ¥è©¦2018ã®éå»åã§å·®ãã¤ã颿°åé¡ã®è§£ãæ¹ãããã</a></p>
<p>å¼ççå ¬ç«å ¥è©¦2018æ°å¦éå»åã®4åç®ã¯é¢æ°åé¡ã§ãã<br />
ãã¡ãã®æçµåé¡ããªãªã¸ãã«è§£èª¬ã¨å¯¾çããä¼ããã¦ãã¾ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/13166.html">2019å¹´(å¹³æ31å¹´)度å¼ççå ¬ç«é«æ ¡å ¥è©¦æ°å¦ã®åé¡ã¨è§£èª¬</a></p>
<p>\(2019\)å¹´ã®åé¡ã詳ãã解説ããä¼ããã¦ãã¾ãã®ã§è¦ã¦ããã¨è¯ãã§ãã</p>
<p>ã⇒ã<a href="https://arakannotie.com/293.html">åé¨çãã¨ãã¹ãé£äºã®æ é¤ã¨æé帯ã忥ã彿¥ã®æãå¼å½ã¯ã©ãããï¼</a></p>
<p>åé¨çã«ã¨ã£ã¦ã忥ã彿¥ã«é£äºãéè¦ã§ããã
<!-- WP QUADS Content Ad Plugin v. 2.0.92 -->
<div class="quads-location quads-ad2" id="quads-ad2" style="float:none;margin:0px 0 0px 0;text-align:center;">

</div>